Stability analysis for economic traits in kale (*Brassica oleracea* var. *acephala* L.)

S. H. Khan, N. Ahmed, N. Jabeen, K. P. Wani and K. Hussain

Division of Olericulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 191 121

(Received: October 2007; Revised: March 2008; Accepted: April 2008)

Abstract

Stability analysis was carried out in sixteen kale genotypes including three commercial checks over six environments (three locations for two years) to identify phenotypically stable genotypes that could perform more or less uniformly under different environmental conditions for various economic traits. Pooled analysis of variance for stability in the performance of different genotypes of kale were highly significant for all the characters viz. plant height, plant spread, leaf thickness, stem thickness, leaf number, leaf weight, leaf yield, leaf length, lamina length, leaf breadth, leaf size, average stalk weight, average midrib weight, leaf: stalk ratio, blade: midrib ratio, days to first leaf picking and duration of picking indicating that the material selected possessed significant variation for all the characters under study confirming that the environments selected were variable and random and influenced the expression of most of the traits selected for stability studies. Mean squares arising due to G x E interaction were significant for most of the traits except plant spread, leaf thickness, leaf weight, average stalk weight, average midrib weight, blade: midrib ratio and leaf: stalk ratio revealing that most of the characters under study were having significant differential response to the changing environments and the characters showing non significant mean squares revealed, by and large, less effects of the changing environments. In the present study no genotype was found stable for leaf yield across environments. However, genotypes SH-K-28, SH-K-33, Khanyari and SH-K-21 could be recommended for cultivation across environments on the basis of stability performance for various economic characters.

Key words: Kale, environments, stability, economic traits

Introduction

Kales/borecoles (*Brassica oleracea* var. *acephala* L.) are group of non-heading plants of cabbage family and are hardiest of Cole crops. They are biennials or perennials, usually grown as annuals for their edible leaves. They can withstand drought and temperatures of -10 to -15° C and, therefore, when supply of most of the vegetables is scarce kales are still conveniently available as greens. In India, kale has not been grown as a vegetable crop for commercial use. However, it is commercially grown in Kashmir and to a limited extent in Jammu, Assam and Himachal Pradesh. In Jammu and Kashmir, it is a popular vegetable both among rich and poor and grown in almost all kitchen gardens and also as a commercial crop around cities and towns. In Kashmir, kale is grown round the year but it shines most as a cold weather crop and is at its most flavourful and tender condition in winter months. Genotype-environment interactions are of major importance to a breeder in the process of developing new varieties. As such the interaction of genotype with the environment has an important bearing in breeding improved varieties. Genotype x environment interaction has a masking effect on the performance of a genotype and hence the relative ranking of the genotypes do not remain the same over number of environments. Adaptability of genotypes to environmental fluctuations is important for the stabilization of crop production both over regions and years. Estimation of phenotypic stability, which involves regression analysis, has proven to be a valuable tool in the assessment of varietal adaptability. Stability analysis is useful in the identification of adaptable genotypes and in predicting the response of various genotypes over changing environments. It is generally agreed that, the more stable genotypes can somehow adjust their phenotypic responses to provide some measures of uniformity in spite of environmental fluctuations.

In kale breeding programme it is, therefore, important to screen and identify the phenotypically stable genotypes which could perform more or less uniformly under different environmental conditions. In view of scanty information with respect to adaptability of kale genotypes, the present investigation was undertaken to determine genotype x environment interaction and stability parameters for various economic traits and to identify stable genotype(s).

Materials and methods

The experimental material for the present investigation comprised of sixteen kale genotypes/lines including three commercial checks. These genotypes were grown over six environments (three locations for two years) during rabi 2003-04 and 2004-05 in a randomized block design at three locations, namely Division of Olericulture, Sher-e-Kashmir University of Agricultural Sciences and Technology Shalimar, Srinagar; Faculty of Agriculture, Wadura, Sopore and High Altitude Rice Research Sub station, Larnoo, Anantnag. There were three rows of each genotype in a plot at a spacing of 20 x 30 cm. Observations were recorded on five competitive plants in respect of twenty traits namely plant height (cm), plant spread (cm), leaf thickness (mm), stem thickness (cm), number of leaves plant⁻¹ average leaf weight (g), number of pickings plant⁻¹ leaf yield plant⁻¹(g), leaf length (cm), lamina length (cm), leaf breadth (cm), leaf size (cm²), average stalk weight (g), average midrib weight (g), blade: midrib ratio, leaf: stalk ratio, days to first leaf picking and duration of picking.

The stability parameters estimated were mean of the trait (X), linear regression (b) and the mean square deviation from the regression (Sd²_i), while X provides a measure of the performance of a genotype as compared to other entries. The b, and Sd², values are the measure of the G x E interaction. In general if G x E is nonsignificant or where it is either or predominantly linear as compared to its non-linear component, the prediction of stability of a genotype over environments becomes more precise and accurate. As per the Eberhart and Russel model of stability, components Sd², measures the predictability where as b, measures the stability. Stability of a genotype can be predicted more precisely if G x E interaction and Sd², value is non-significant. They defined an ideal genotype as the one having high mean with a regression co-efficient equal to unity and deviation from regression close to zero. They further suggested that genotypes could be classified as, below average stable performing well only in favourable environments $(b_i > 1)$, above average stable adapted specifically to poor environments ($b_i < 1$) and average stable performing well in most of the environments $(b_i = 1)$. Genotype x environment interaction and stability analysis of different genotypes across the six environments were worked out as per the model given by Eberhart and Russel [1].

Results and discussion

The analysis of variances for the individual environments revealed significant differences for all the characters in all the six environments indicating existence of genetic differences among the kale genotypes studied. Pooled analysis of variance for stability performance of different genotypes showed highly significant differences for all the traits thus, indicating that the material selected possessed significant variation for all the characters studied confirming random and variable nature of environments selected, which influenced the expression of most of the traits studied (Table 1).

Mean squares arising due to genotype and environment (G x E interaction) revealed that except for plant spread, leaf thickness, leaf weight, average stalk weight, average midrib weight, blade: midrib ratio and leaf: stalk ratio the variance ratio was significant for most of the traits viz. plant height, number of leaves, stem thickness, number of pickings, leaf yield, leaf length, lamina length, leaf breadth and leaf size, revealing that most of the characters of the genotypes under study were having significant differential response to the changing environments.

Component analysis of environment + (genotype x environment) were significant for all the traits except for average stalk weight, average midrib weight and leaf: stalk ratio. Partitioning of this variation into linear and non-linear components revealed that the mean squares due to environments (linear) were significant for all the characters. The significant mean squares confirm that the environments were random and different and they exercised influence on the expression of the trait and this variation could have arisen due to the linear response of the regression of the cultivar to the environment. The mean squares due to G x E (L) were significant for most of the characters viz. plant height, leaf thickness, stem thickness, number of leaves, leaf weight, number of pickings, leaf yield, leaf length, lamina length, leaf breadth, leaf size, average stalk weight, blade: midrib ratio, leaf: stalk ratio, days to first leaf picking and duration of picking revealing that the behavior of the genotypes could be predicted over the environments more precisely and accurately as the G x E interaction was the out come of the linear function of the environmental components. However, mean squares due to G x E (linear) were non significant for plant spread and average midrib weight indicating possible absence

Source of variance	Mean squares													
	Genotypes	Env.+ (genotype x env.)	Environ.	Genotyp x env.	es Environ. (L)	Genotype x env. (L)	Pooled deviation	Pooled error						
D.F.	15	80	5	75	1	15	64	192						
Plant height (cm)	1076.69**	15.48**	137.823**	7.33*	689.12**	18.05**	4.36**	1.26						
Plant spread (cm)	251.25**	17.71**	170.29**	7.53	851.46**	10.37	6.39**	2.30						
Leaf thickness (mm)	0.068**	0.0002**	0.0014**	0.0001	0.0070**	0.0002*	0.0001**	0.00006						
Stem thickness (cm)	9.0449**	0.084**	0.356**	0.066**	1.781**	0.200**	0.303**	0.007						
No. of leaves plant ⁻¹	3698.38**	80.913**	497.928**	53.112**	2489.641**	243.779**	5.105**	0.804						
Av. leaf weight (g)	139.530**	0.550**	4.692**	0.247	23.459**	0.497**	0.205**	0.834						
No. of pickings plant ⁻¹	86.089**	2.017**	21.115**	0.745**	105.573**	2.849**	0.204**	0.057						
Leaf yield plant ⁻¹ (g)	179746.9**	7999.9** 7	3266.1**	3648.8**36	6330.5** 1	5168.5** 7	720.79** 1	25.45						
Leaf length (cm)	124.51**	4.17**	30.09**	2.45**	150.47**	6.59**	1.32**	0.52						
Lamina length (cm	19.19**	0.95**	2.01	0.88**	10.06**	2.79**	0.38**	0.10						
Leaf breadth (cm	23.94**	1.04**	7.20**	0.624*	35.99**	1.47**	0.39**	0.40						
Leaf size (cm ²)	9990.47**	523.00**	3498.25**	324.65**1	7491.25**	869.43** 1	176.68**	21.72						
Av. stalk weight (g)	12.7914**	0.1021	0.1024	0.0102	1 0.5119*	0.1971**	0.0735**	0.0108						
Av .midrib weight (g)	4.159**	0.017	0.018	0.017	0.094*	0.011	0.017	0.003						
Blade: mid rib ratio	129.75**	1.33*	3.02*	1.22	15.09**	2.53**	0.84**	0.202						
Leaf: stalk ratio	13.03**	0.51	0.47	0.51	2.33**	1.08**	0.34**	0.043						
Days to first leaf picking	145.99**	3.76**	34.30**	1.72**	171.48**	5.06**	0.83**	0.26						
Duration of picking	145.99**	3.76**	34.30**	1.72**	171.48**	5.06**	0.83**	0.26						

Table 1. Mean squares of stability analysis for economic traits of kale

*, ** Significant at 5 and 1 percent, respectively

of genetic differences among the genotypes for their regression on environment index making difficult the prediction for the performance of these traits.

The non-linear component arising due to the heterogeneity measured as mean square due to pooled deviation was significant for all the characters revealing presence of non-linear response of the genotypes to the changing environments. The significance of pooled deviation for all the characters confirms contribution of non-linear component to the total G x E interaction. The genotypes / varieties differed with respect to the stability of these traits making its prediction more difficult. However, the magnitude of linear component i.e., environment (L) and genotype x environment (L) was many times higher than the non linear component (pooled deviation) for most of the characters revealing that the prediction of stability could be reliable though it may get affected to some extent.

Comparison of G x E interaction with non-linear

component revealed that it was significant for most of the traits except plant spread, leaf thickness, leaf weight, blade: ratio and leaf: stalk ratio. In traits where the nonlinear component was non-significant, the G x E interaction for these traits was greatly influenced by environmental factors and there exist either no relationship or complex relationship between genotype and environment effect making its prediction more difficult for that trait.

In the present study (Table 2) the genotypes showing average stability and high to moderate mean performance than the population mean were SH-K-13, SH-K-8, SH-K-10 and SH-K-12 for plant height; SH-K-1, SH-K-10, SH-K-12, SH-K-21, SH-K-28, SH-K-33 and *Kawdari* for plant spread; SH-K-1, SH-K-5, SH-K-3, SH-K-11, SH-K-13, SH-K-33, *Khanyari* and *Jumadari* for leaf thickness; SH-K-1, SH-K-2, SH-K-10, SH-K-5, SH-K-12, SH-K-33 and *Kawdari* for stem thickness; SH-K-2, SH-K-10, SH-K-11, SH-K-21, SH-K-24, SH-K-28, *Khanyari* and *Jumadari* for number of leaves; SH-K-14,

Genotype	Plar	nt height (cr	m)	Plant	spread (cm)	No. of pickings /plant			Days to first leaf picking			Duration of picking		
	X	b _i	Sd^{2}_{i}	X	b _i	Sd^{2}_{i}	X	b _i	Sd_{i}^{2}	X	b _i	Sd^{2}_{i}	\overline{X}	b _i	Sd_{i}^{2}
SH-K-1	9.03	0.148*	-0.979	3.145	0.836	-0.0037	4.200	0.538*	-0.050	23.54	2.257*	0.0110	109.5	2.257*	0.01
SH-K-2	9.32	0.033*	-1.131	3.267	0.738	0.0060	4.211	0.570*	-0.047	23.43	2.266*	0.8788**	109.6	2.266*	0.9*
SH-K-5	31.73	2.308*	0.974	1.406	1.182	0.0046	4.955	0.616	0.092	20.61	1.838*	-0.0169	112.4	1.838*	0.00
SH-K-8	22.19	0.700	-0.553	2.0973	2.238*	0.0095	9.422	1.642*	0.055	17.68	1.221	1.4925**	115.3	1.221	1.5**
SH-K-10	33.78	1.047	0.349	3.133	1.614	0.0003	4.511	0.425*	0.015	22.73	1.693	0.7085**	110.3	1.693	0.7**
SH-K-11	43.78	1.298	7.953**	3.423	1.897	0.1122*	* 4.656	0.493*	0.028	24.31	0.816	-0.1072	108.7	0.817	-0.1
SH-K-12	33.45	0.635	0.581	0.890	0.410	0.0011	13.589	1.796	0.551**	16.66	-0.024	1.1982**	116.3	-0.024	1.2**
SH-K-13	39.65	1.247	0.826	1.755	3.677*	0.0029	11.278	1.731*	0.071	17.17	0.315	0.6776**	115.8	0.315	0.7**
SH-K-14	38.00	1.515	8.630**	2.538	2.156	0.0671*	* 9.178	2.030	1.138**	17.02	0.293	1.7431**	116.0	0.293	1.7**
SH-K-21	42.75	0.830*	-1.249	2.661	0.667	0.0859*	* 4.911	0.495*	-0.004	25.15	0.855	0.1169	107.9	0.855	0.1
⊱ SH-K-24	35.68	0.152*	0.774	6.243	-0.363*	0.007	3.689	0.149*	0.037	26.41	0.384*	-0.1791	106.6	0.384*	-0.2
🕺 SH-K-28	50.14	1.283	13.421**	2.189	-0.095	0.0310*	* 9.700	1.342*	-0.023	12.73	0.685	-0.0943	120.3	0.686	0.1
亨 SH-K-33	47.13	0.605	4.501**	2.427	0.458	0.0087	4.633	0.798	0.234**	13.51	0.735	-0.0529	119.5	0.735	-0.1
🔓 Khanyari	56.91	2.079*	1.190	1.368	0.492*	-0.0042	14.500	1.792*	0.194**	12.93	0.979	0.1353	120.1	-0.979	0.1
🚆 Kawdari	47.38	1.304	11.544**	1.758	2.243	0.0569*	11.678	1.444*	0.069	13.20	0.836	0.7318**	119.8	0.837	0.7**
ទ Jumadari	32.78	0.817	2.767**	2.854	-2.150*	0.0022	3.511	0.139*	-0.014	25.09	0.852	1.8761**	107.9	0.852	1.9**
Population mean	1 35.87	1.00		2.63	1.00		7.73	1.00		19.51	1.00		113.5	1.00	
8 S.E(±)	0.93	0.32		0.08	0.52		0.20	0.18		0.41	0.28		0.40	0.30	
Genotypes	Leaf	thickness ((mm)		No. of I	eaves pla	nt-1		Av. lea	f weight	(g)		Leaf le	ength (cm)
Genotypes	Leaf \overline{X}	thickness (b _i	(mm) Sd² _i	7	No. of I	eaves pla b _i	int-1 Sd² _i		Av. lea ⊼	ıf weight b _i	(g) Sd² _i	X	Leaf le	ength (cm b _i) Sd² _i
Genotypes	Leaf X 0.447	thickness (b _i 0.627	(mm) Sd ² _i 0.000	22	No. of I	eaves pla b _i 0.374*	nt-1 Sd ² _i 1.997*	20	Av. lea	if weight b _i 0.611*	(g) Sd ² _i -0.062	X 29.6	Leaf le	ength (cm b _i 1.714) Sd² _i 1.245*
Genotypes Genotypes SH-K-1 SH-K-2	Leaf X 0.447 0.472	thickness (b _i 0.627 0.084	(mm) Sd ² _i 0.000 0.0001 [*]	22 22	No. of I	eaves pla b _i 0.374* 0.408*	nt-1 Sd ² _i 1.997* 0824	20 20	Av. lea	f weight b _i 0.611* 0.659	(g) Sd ² _i -0.062 0.459**	X 29.6 29.7	Leaf le	ength (cm b _i 1.714 1.727) Sd ² _i 1.245* 1.221*
Genotypes - dl would SH-K-1 SH-K-2 SH-K-5	Leaf X 0.447 0.472 0.466	thickness (b _i 0.627 0.084 1.002	(mm) Sd ² _i 0.000 0.0001 ³ 0.0001	22 22 22 22	No. of F 2.38 2.29 2.11	eaves pla b _i 0.374* 0.408* 0.157*	nt-1 Sd ² _i 1.997* 0824 1.612*	20 20 20 20	Av. lea .049 .390 .353	f weight b _i 0.611* 0.659 2.123	(g) Sd ² _i -0.062 0.459** 0.179*	X 29.6 * 29.7 21.0	Leaf le	ength (cm b _i 1.714 1.727 1.081) Sd ² _i 1.245* 1.221* 1.595*
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-8	Leaf X 0.447 0.472 0.466 0.224	thickness (b _i 0.627 0.084 1.002 0.644	(mm) Sd ² , 0.000 0.0001 0.0001 0.000) 22 22 22 56	No. of 1 	eaves pla b _i 0.374* 0.408* 0.157* 2.827*	nt-1 Sd ² _i 1.997* 0824 1.612* 20.109*	20 20 20 * 8	Av. lea .049 .390 .353 .932	f weight b _i 0.611* 0.659 2.123 0.767	(g) Sd ² _i -0.062 0.459 ^{**} 0.179* 0.234 ^{**}	X 29.6 * 29.7 21.0 * 22.0	Leaf le	ength (cm b _i 1.714 1.727 1.081 1.480) Sd ² _i 1.245* 1.221* 1.595* 0.144
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-8 SH-K-10	Leaf X 0.447 0.472 0.466 0.224 0.218	thickness (b _i 0.627 0.084 1.002 0.644 2.799*	(mm) Sd ² _i 0.000 0.0001 0.0001 0.000 0.0001	22 22 22 22 56 20	No. of 2.38 2.29 2.11 5.11 0.67 	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396*	int-1 Sd ² _i 1.997* 0824 1.612* 20.109* -0.2764	20 20 20 * 8 + 14	Av. lea .049 .390 .353 .932 .111	f weight b _i 0.611* 0.659 2.123 0.767 1.259	(g) Sd ² _i -0.062 0.459** 0.179* 0.234** 0.164*	X 29.6 * 29.7 21.0 * 22.0 25.2	Leaf le	ength (cm b _i 1.714 1.727 1.081 1.480 1.214) Sd ² _i 1.245* 1.221* 1.595* 0.144 0.395
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-8 SH-K-10 SH-K-11	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768	(mm) Sd ² _i 0.000 0.0001 ³ 0.0001 0.000 0.0001 0.000	22 22 22 56 20 19	No. of 1 2.38 2.29 2.11 3.11 0.67 0.52	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206*	nt-1 Sd ² _i 1.997* 0824 1.612* 20.109* -0.2764 0.359	20 20 20 * 8 - 14 19	Av. lea .049 .390 .353 .932 .111 .743	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304	(g) Sd ² _i -0.062 0.459** 0.179* 0.234** 0.164* 0.252*	X 29.6 * 29.7 21.0 * 22.0 25.2 25.0	Leaf le	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924) Sd ² _i 1.245* 1.221* 1.595* 0.144 0.395 0.336
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-8 SH-K-10 SH-K-11 SH-K-11 SH-K-12	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750	(mm) Sd ² _i 0.000 0.0001 0.000 0.000 0.000 0.000 0.000	22 22 22 56 20 19 110	No. of b 2.38 2.29 2.11 3.11 3.67 9.52 0.88	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398*	nt-1 Sd ² _i 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845	20 20 20 * 8 4 14 19 8	Av. lea .049 .390 .353 .932 .111 .743 .031	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334*	(g) Sd ² _i -0.062 0.459** 0.179* 0.234** 0.164* 0.252* -0.053	X 29.6 * 29.7 21.0 * 22.0 * 25.2 25.0 16.5	Leaf le 641 721 032 012 287 023 545	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940) Sd ² _i 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027**
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154	(mm) Sd ² _i 0.000 0.0001 ³ 0.0001 0.000 0.0001 0.000 0.000 0.000 0.000	> 22 * 22 22 56 20 19 110 61	No. of b 2.38 2.29 2.11 3.11 3.67 9.52 0.88 1.31	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656	nt-1 Sd ² _i 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328*	20 20 20 * 8 - 14 19 8 * 8	Av. lea .049 .390 .353 .932 .111 .743 .031 .276	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664*	(g) Sd ² _i -0.062 0.459** 0.179* 0.234* 0.164* 0.252* -0.053 -0.071	X 29.6 * 29.7 21.0 * 22.0 * 22.2 25.0 16.5 22.2	Leaf le 541 721 032 012 287 023 545 268	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415) Sd ² _i 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13 SH-K-14	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147 0.187	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154 -0.193*	(mm) Sd ² _i 0.000 0.0001 ³ 0.0001 0.000 0.000 0.000 0.000 0.000 0.000) 22 22 22 22 20 19 110 61 48	No. of 1 2.38 2.29 2.11 3.11 0.67 0.52 0.88 1.31 3.08	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656 2.692*	int-1 Sd ² ; 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328* 24.441*	20 20 20 * 8 - 14 19 8 * 8 * 8 * 8	Av. lea .049 .390 .353 .932 .111 .743 .031 .276 .989	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664* 0.789	(g) Sd ² _i -0.062 0.459*' 0.179* 0.234*' 0.262* -0.053 -0.071 0.008	X 29.6 * 29.7 21.0 * 22.0 25.2 25.0 16.5 22.2 21.2	Leaf le 641 721 032 012 287 023 545 268 293	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415 1.758) Sd ² _i 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199 0.964*
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13 SH-K-14 SH-K-21	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147 0.187 0.286	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154 -0.193* 1.565	(mm) Sd ² _i 0.000 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000) 22 22 22 56 20 19 110 61 48 20	No. of k 2.38 2.29 2.11 3.11 0.67 0.52 0.88 1.31 3.08 0.72	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656 2.692* 0.428*	int-1 Sd ² ; 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328* 24.441* -0.310	20 20 20 * 8 - 14 19 8 * 8 * 8 * 8 * 8 * 8	Av. lea .049 .390 .353 .932 .111 .743 .031 .276 .989 .423	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664* 0.789 0.508	(g) Sd ² _i -0.062 0.459*' 0.179* 0.234*' 0.252* -0.053 -0.071 0.008 0.023	X 29.6 * 29.7 21.0 * 22.0 * 25.2 25.0 16.5 22.2 21.2 23.9	Leaf le 641 721 032 012 287 023 545 268 293 931	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415 1.758 2.037) Sd ² _i 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199 0.964* 0.815*
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13 SH-K-14 SH-K-21 SH-K-24	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147 0.187 0.286 0.345	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154 -0.193* 1.565 0.709	(mm) Sd ² _i 0.000 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0002	22 * 22 56 20 110 61 48 20 * 14	No. of k 2.38 2.29 2.11 3.11 0.67 0.52 0.88 1.31 3.08 0.72 4.17	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656 2.692* 0.428* 0.039*	int-1 Sd ² ; 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328* 24.441* -0.310 0.1401	20 20 20 * 8 - 14 19 8 * 8 * 8 * 8 * 8 12 14	Av. lea (.049 .390 .353 .932 .111 .743 .031 .276 .989 .423 .849	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664* 0.789 0.508 1.022	(g) Sd ² _i -0.062 0.459*' 0.179* 0.234*' 0.164* 0.252* -0.053 -0.071 0.008 0.023 0.122*	X 29.6 * 29.7 21.0 * 22.0 * 25.2 25.0 16.5 22.2 21.2 23.9 32.1	Leaf le 541 721 032 012 287 023 545 268 293 031 188	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415 1.758 2.037 -1.486*) Sd ² _i 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199 0.964* 0.815* 3.173**
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13 SH-K-13 SH-K-14 SH-K-21 SH-K-24 SH-K-28	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147 0.187 0.286 0.345 0.297	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154 -0.193* 1.565 0.709 1.672	(mm) Sd ² _i 0.000 0.0001 ³ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 ³ 0.0003 ³	22 * 22 56 20 19 110 61 48 20 * 14 ** 24	No. of 1 2.38 2.29 2.11 3.11 0.67 0.52 0.88 1.31 3.08 0.72 4.17 4.67	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656 2.692* 0.428* 0.039* 0.786*	int-1 Sd ² , 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328* 24.441* -0.310 0.1401 -0.0291	20 20 20 * 8 - 14 19 8 * 8 * 8 * 8 * 8 12 14 8	Av. lea .049 .390 .353 .932 .111 .743 .031 .276 .989 .423 .849 .993	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664* 0.789 0.508 1.022 0.491	(g) Sd ² _i -0.062 0.459*' 0.179* 0.234*' 0.164* 0.252* -0.053 -0.071 0.008 0.023 0.122* 0.033	X 29.6 * 29.7 21.0 * 22.0 * 22.0 25.0 16.5 22.2 21.2 23.9 32.1 23.6	Leaf le 541 721 032 012 287 023 545 268 293 031 188 520	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415 1.758 2.037 -1.486* 0.287*) Sd ² _i 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199 0.964* 0.815* 3.173** -0.316
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13 SH-K-13 SH-K-14 SH-K-21 SH-K-24 SH-K-28 SH-K-33	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147 0.187 0.286 0.345 0.297 0.247	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154 -0.193* 1.565 0.709 1.672 1.400	(mm) Sd ² ; 0.000 0.0001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0003 0.000) 22 22 22 56 20 19 110 61 48 20 * 14 * 24 23	No. of 1 2.38 2.29 2.11 3.11 0.67 0.52 0.88 1.31 3.08 0.72 1.17 4.67 3.38	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656 2.692* 0.428* 0.39* 0.786* 0.259*	int-1 Sd ² , 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328* 24.441* -0.310 0.1401 -0.0291 1.387*	20 20 20 * 8 + 14 19 * 8 * 8 * 8 * 8 * 8 12 14 * 10	Av. lea .049 .390 .353 .932 .111 .743 .031 .276 .989 .423 .849 .993 .635	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664* 0.789 0.508 1.022 0.491 1.572	(g) Sd ² _i -0.062 0.459*' 0.179* 0.234*' 0.164* 0.252* -0.053 -0.071 0.008 0.023 0.122* 0.033 0.553*'	X 29.6 * 29.7 21.0 * 22.0 25.2 25.0 16.5 22.2 21.2 23.9 32.1 23.6 * 25.7	Leaf le 541 721 032 012 287 023 545 268 293 031 188 520 785	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415 1.758 2.037 -1.486* 0.287* 0.460) Sd ² ; 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199 0.964* 0.815* 3.173** -0.316 0.586
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13 SH-K-13 SH-K-14 SH-K-24 SH-K-28 SH-K-28 SH-K-33 Khanyari	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147 0.187 0.286 0.345 0.297 0.247 0.233	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154 -0.193* 1.565 0.709 1.672 1.400 0.435	(mm) Sd ² _i 0.000 0.0001 ³ 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000) 22 22 22 56 20 19 110 61 48 20 * 12 ** 22 23 32	No. of 1 2.38 2.29 2.11 3.11 0.67 0.52 0.88 1.31 3.08 0.72 4.17 4.67 3.38 2.91	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656 2.692* 0.428* 0.39* 0.786* 0.259* 0.745*	int-1 Sd ² ; 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328* 24.441* -0.310 0.1401 -0.0291 1.387* -0.6190	20 20 20 * 8 + 14 19 * 8 * 8 * 8 * 8 * 8 * 12 14 * 10 * 8	Av. lea .049 .390 .353 .932 .111 .743 .031 .276 .989 .423 .849 .993 .635 .393	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664* 0.789 0.508 1.022 0.491 1.572 0.631	(g) Sd ² _i -0.062 0.459*' 0.179* 0.234*' 0.164* 0.252* -0.053 -0.071 0.008 0.023 0.122* 0.033 0.553*' -0.049	X 29.6 * 29.7 21.0 * 22.0 25.2 25.0 16.5 22.2 21.2 23.9 32.1 23.6 * 25.7 15.6	Leaf le 541 721 032 012 287 023 545 268 293 031 188 520 785 511	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415 1.758 2.037 -1.486* 0.287* 0.460 0.809) Sd ² ; 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199 0.964* 0.815* 3.173** -0.316 0.586 -0.175
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13 SH-K-13 SH-K-14 SH-K-24 SH-K-28 SH-K-28 SH-K-33 Khanyari Kawdari	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147 0.187 0.286 0.345 0.297 0.247 0.233 0.246	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154 -0.193* 1.565 0.709 1.672 1.400 0.435 0.799	(mm) Sd ² _i 0.000 0.0001 ³ 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000) 22 22 22 56 20 19 110 61 48 20 * 14 * 24 23 32 * 30	No. of 1 	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656 2.692* 0.428* 0.039* 0.786* 0.259* 0.745* 0.428*	int-1 Sd ² , 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328* 24.441* -0.310 0.1401 -0.0291 1.387* -0.6190 2.582*	20 20 20 * 8 14 19 8 * 8 * 8 * 8 * 8 * 8 * 12 14 8 * 10 * 8 * 9	Av. lea .049 .390 .353 .932 .111 .743 .031 .276 .989 .423 .849 .993 .635 .393 .110	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664* 0.789 0.508 1.022 0.491 1.572 0.631 0.937	(g) Sd ² _i -0.062 0.459* 0.179* 0.234* 0.164* 0.252* -0.053 -0.071 0.008 0.023 0.122* 0.033 0.553* -0.049 -0.023	X 29.6 * 29.7 21.0 * 22.0 25.2 25.0 16.5 22.2 21.2 23.9 32.1 23.6 * 25.7 15.6 22.7	Leaf le 541 721 032 012 287 023 545 268 293 031 188 520 785 511 729	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415 1.758 2.037 -1.486* 0.287* 0.460 0.809 0.449) Sd ² ; 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199 0.964* 0.815* 3.173** -0.316 0.586 -0.175 0.656
Genotypes Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13 SH-K-13 SH-K-14 SH-K-21 SH-K-24 SH-K-28 SH-K-28 SH-K-33 Khanyari Kawdari Jumadari	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147 0.187 0.286 0.345 0.297 0.247 0.233 0.246 0.237	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154 -0.193* 1.565 0.709 1.672 1.400 0.435 0.799 0.778	(mm) Sd ² _i 0.000 0.0001 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000000) 22 22 22 20 20 10 61 48 20 * 23 32 ** 32 ** 32 ** 32 ** 32 ** 32 ** 32 ** 32	No. of 1 	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656 2.692* 0.428* 0.039* 0.786* 0.259* 0.745* 0.428* 0.202*	int-1 Sd ² ; 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328* 24.441* -0.310 0.1401 -0.0291 1.387* -0.6190 2.582* -0.282	20 20 20 * 8 + 14 19 8 * 8 * 8 * 8 * 8 * 12 14 8 * 10 * 9 * 9 14	Av. lea .049 .390 .353 .932 .111 .743 .031 .276 .989 .423 .849 .993 .635 .393 .110 .536	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664* 0.789 0.508 1.022 0.491 1.572 0.631 0.937 2.331*	(g) Sd ² _i -0.062 0.459* 0.179* 0.234* 0.164* 0.252* -0.053 -0.071 0.008 0.023 0.122* 0.033 0.553* -0.049 -0.023 0.176*	X 29.6 * 29.7 21.0 * 22.0 25.2 25.0 16.5 22.2 23.9 32.1 23.6 * 25.7 15.6 22.7 28.8	Leaf le	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415 1.758 2.037 -1.486* 0.287* 0.460 0.809 0.449 1.194) Sd ² ; 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199 0.964* 0.815* 3.173** -0.316 0.586 -0.175 0.656 0.257
Genotypes SH-K-1 SH-K-2 SH-K-5 SH-K-5 SH-K-10 SH-K-10 SH-K-11 SH-K-12 SH-K-13 SH-K-13 SH-K-14 SH-K-21 SH-K-21 SH-K-24 SH-K-28 SH-K-28 SH-K-33 Khanyari Kawdari Jumadari Population mean	Leaf X 0.447 0.472 0.466 0.224 0.218 0.221 0.132 0.147 0.187 0.286 0.345 0.297 0.247 0.233 0.246 0.237 0.28	thickness (b _i 0.627 0.084 1.002 0.644 2.799* 1.768 0.750 1.154 -0.193* 1.565 0.709 1.672 1.400 0.435 0.799 0.778 1.0	(mm) Sd ² _i 0.000 0.0001 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000000) 22 22 22 56 20 110 61 48 20 * 23 32 32 32 32 32 32 32 32 32 32 32 32	No. of 1 2.38 2.29 2.11 3.11 0.67 0.52 0.88 1.31 3.08 0.72 4.17 4.67 3.38 2.91 0.54 3.12 4.12	eaves pla b _i 0.374* 0.408* 0.157* 2.827* 0.396* 0.206* 4.398* 1.656 2.692* 0.428* 0.039* 0.786* 0.259* 0.745* 0.428* 0.202* 1.00	int-1 Sd ² ; 1.997* 0824 1.612* 20.109* -0.2764 0.359 0.845 16.328* 24.441* -0.310 0.1401 -0.0291 1.387* -0.6190 2.582* -0.282	20 20 20 * 8 * 14 19 8 * 8 * 8 * 8 * 8 * 12 14 * 9 * 9 * 9 * 9 * 14	Av. lea .049 .390 .353 .932 .111 .743 .031 .276 .989 .423 .849 .993 .635 .393 .110 .536 .98	f weight b _i 0.611* 0.659 2.123 0.767 1.259 1.304 0.334* 0.664* 0.789 0.508 1.022 0.491 1.572 0.631 0.937 2.331* 1.00	(g) Sd ² _i -0.062 0.459* 0.179* 0.234* 0.164* 0.252* -0.053 -0.071 0.008 0.023 0.122* 0.033 0.553* -0.049 -0.023 0.176*	X 29.6 * 29.7 21.0 * 22.0 25.2 25.0 16.5 22.2 21.2 23.9 32.1 23.6 * 25.7 15.6 22.7 28.8 24.0	Leaf le	ength (cm b _i 1.714 1.727 1.081 1.480 1.214 0.924 0.940 1.415 1.758 2.037 -1.486* 0.287* 0.460 0.809 0.449 1.194 1.00) Sd ² _i 1.245* 1.221* 1.595* 0.144 0.395 0.336 2.027** -0.1199 0.964* 0.815* 3.173** -0.316 0.586 -0.175 0.656 0.257

 Table 2.
 Stability parameters for economic traits of kale

www.IndianJournals.com Members Copy, Not for Commercial Sale

S. H. Khan et al.

[Vol. 68, No. 2

Genotypes	Leaf thickness (mm)				No. of leaves plant-1				Av. lea	f weigh	t (g)	Leaf length (cm)			
	Х	b _i	Sd_{i}^{2}		X	b _i	Sd^{2}_{i}	X	Ā	b _i	Sd^{2}_{i}	X	b _i		Sd_{i}^{2}
SH-K-1	16.520	1.291	0.293**		13.07	0.149** 0.107**		* 216	.0	0.525	101.1**	449.2	0.75	58	723.8**
SH-K-2	16.772	3.992*	0.002		13.51	0.748	.748 0.008		.3	1.832*	51.7*	454.4	0.77	70 <u>4</u>	4447.4**
SH-K-5	15.432	0.952	-0.003		13.76	1.635	0.995*	* 212	.7	1.421	287.7*	451.0	0.66	60	939.1*
SH-K-8	15.495	1.290	0.036	-	10.00	0.568	0.407*	* 155	.1	0.740	105.0**	504.2	2.25	54* ⁻	1912.2**
SH-K-10	17.408	4.367*	0.137		13.45	2.718*	0.189*	* 236	.5	3.527*	174.8**	292.9	0.65	51*	16.6
SH-K-11	14.463	2.081	0.599**		14.25	1.216	0.088*	206	.7	1.497	255.4**	286.3	0.54	13	787.5**
SH-K-12	12.363	2.903*	0.171*		8.50	0.551	0.048	105	.3	0.865	-16.5	893.8	3.13	30*	793.1**
SH-K-13	14.725	-0.047	0.635**		11.30	1.367	0.227*	* 166	.3	0.895	106.5**	510.1	1.42	25	947.1*
SH-K-14	13.485	-1.245*	-0.018		10.98	1.887*	0.008	147	.6	0.842	-1.6	435.7	2.15	53*	2387.6*
SH-K-21	14.626	-0.261	1.764**		13.24	0.066	0.484*	* 194	.2 .	0.014	798.7**	257.9	0.52	27*	-91.1
SH-K-24	12.231	0.931	-0.063		15.60	0.308*	-0.004	190	.8	0.516*	-10.6	210.7	0.17	74*	157.2
SH-K-28	16.465	-0.130	0.159**	· .	15.77	0.985	-0.007	259	.7	0.726	96.9**	222.6	0.64	46*	149.4
SH-K-33	16.353	-2.552*	0.406**	· .	15.31	1.296	0.001	249	.5	0.021*	26.2	249.4	0.56	68*	-54.4
Khanyari	11.627	0.736	-0.044*		14.02	-0.434	2.612*	* 162	.9	0.047	351.4**	277.3	0.67	75*	-63.8
Kawdari	16.079	-2.277*	0.277**		13.19	1.907*	0.115*	* 211	.2	0.688	25.9	279.5	0.54	13*	367.4**
Jumadari	16.546	3.966*	0.062		12.59	1.032	0.248*	* 209	.0	1.891	127.0**	235.4	0.52	22*	106.2
Population	mean15.04	1.00		1	13.03	1.00		196	.9	1.00		381.9	1.00)	
S.E. (±)	0.28	0.78			0.28	0.41		5	.90	0.40		12.00	0.20)	
Genotype	enotype Plant height (cm)		Plar	Plant spread (cm)			No. of pickings /plant		Days to first leaf picking			Duration of picking			
5 =	X	b _i	Sd^{2}_{i}	X	b _i	Sd^{2}_{i}	X	b _i	Sd^{2}_{i}	Х	b _i	Sd_{i}^{2}	Х	b _i	Sd_{i}^{2}
SH-K-1	3.145	0.836	-0.0037	5.19	3.504	0.0841**	2.65	0.001	0.0292*	* 5.63	-0.541*	-0.1872	3.89	1.164	0.041
SH-K-2	3.267	0.738	0.0060	5.30	3.573	0.2137**	2.74	3.455	0.0162*	* 5.53	0.067	0.1061	3.89	1.971	0.108**
SH-K-5	1.406	1.182	0.0046	3.48	-1.444	0.1124**	2.50	3.396	0.0094*	* 6.78	1.420	0.0249	5.92	4.374	0.212**
SH-K-8	20973.000	2.238*	0.0095	2.40	-2.175*	0.011	1.20	-0.316	0.0119**	5.47	-0.395	0.586*	3.74	0.485	0.142**
SH-K-10	3.133	1.614	0.0003	2.69	-0.137	0.046**	1.84	1.915	0.0097*	* 6.24	0.526	0.1844	5.31	1.138	0.350**
SH-K-11	3.423	1.897	0.1122**	4.32	1.578	0.0129*	2.37	-1.661	0.1067*	* 6.64	1.967	0.598**	4.58	1.339	-0.029
SH-K-12	0.890	0.410	0.0011	1.11	-0.901*	-0.0062*	0.39	1.413	0.002	18.41	6.025*	2.193**	7.31	0.400	0.271**
SH-K-13	1.755	3.677*	0.0029	1.15	0.299	-0.0080*	0.38	0.509	-0.002	19.01	0.912	1.553**	7.26	0.646	0.0324
SH-K-14	2.538	2.156	0.0671**	1.16	-0.339	-0.004	0.52	0.922	0.002	15.10	0.372	2.459**	7.84	4.300	0.305**
SH-K-21	2.661	0.667	0.0859**	2.99	6.934*	0.038**	1.70	-0.902	0.007*	5.61	0.330	0.114	4.29	0.272	0.876**
SH-K-24	6.243	-0.363*	0.007	4.12	2.239	0.079**	2.07	1.693	0.026*	5.22	-0.640*	-0.143	3.61	-0.590	* -0.002
SH-K-28	2.189	-0.095	0.0310**	1.48	0.112	0.060**	1.06	0.672	-0.001	7.08	1.223	0.1261	6.23	3.510	0.757**
SH-K-33	2.427	0.458	0.0087	1.85	1.547	0.216**	0.73	1.574	0.005	12.35	1.805	1.457**	5.97	-6.319	* 0.181**
Khanyari	1.368	0.492*	-0.0042	1.10	-0.581*	-0.002	0.69	2.421	-0.001	10.80	2.491	0.688**	7.72	5.069	0.310**
Kawdari	1.758	2.243	0.0569*	1.49	-1.893	0.047**	0.95	-0.017	0.0001	8.07	-0.371	0.369*	6.24	-1.237	1.125**
Jumadari	2.854	-2.150*	0.0022	2.92	3.685	0.991**	1.28	0.924	0.002	9.11	0.810	0.0933	5.03	-0.523	0.126**
Population n	nean 2.63	1.00		2.67	1.00		1.44	1.00		9.19	1.00		5.55	1.00	
S.E. (±)	0.08	0.52		0.12	1.52		0.59	1.71		0.41	0.94		0.66	1.54	

May, 2008]

181

SH-K-21, SH-K-28 and *Kawdari* for leaf weight; SH-K-8, SH-K-13, SH-K-11, SH-K-10, *Jumadari, Khanyari* and *Kawdari*, for leaf length; SH-K-5, SH-K-8 and SH-K-24 for lamina length; SH-K-2, SH-K-28, SH-K-33 and SH-K-12 for leaf breadth, SH-K-14, SH-K-12 and *Kawdari* for leaf size; SH-K-12, SH-K-13, SH-K-14, SH-K-28, SH-K-33, *Khanyari, Kawdari* and *Jumadari* for average midrib weight; SH-K-11, SH-K-13 and SH-K-14 for average stalk weight; SH-K-2, SH-K-5, SH-K-10, SH-K-21, SH-K-28, SH-K-33 and *Khanyari* for leaf: SH-K-11, SH-K-21, SH-K-28, SH-K-33 and *Khanyari* for days to first leaf picking and SH-K-28, SH-K-33, SH-K-11and SH-K-21 for duration of picking.

Genotypes showing below average stability (b_i significant and > 1) and specifically adapted to favourable environments were *Khanyari* for plant height, SH-K-10 for leaf thickness, SH-K-8, SH-K-13 and *Jumadari* for stem thickness; SH-K-12 for number of leaves; SH-K-8, SH-K-13, SH-K-28 and *Kawdari* for number of pickings; SH-K-2, SH-K-10, SH-K-14, SH-K-33 and *Jumadari* for lamina length, SH-K-14 for leaf breadth, SH-K-1 and SH-K-5 for days to first leaf picking and duration of picking.

The genotypes showing above average stability (b_i significant and <1) in respect of most of the traits were SH-K-1, SH-K-2, SH-K-21 and SH-K-24 for plant height; SH-K-5 and *Khanyari* for plant spread; SH-K-14 for leaf thickness; SH-K-24 and *Khanyari* for stem thickness; SH-K-1, SH-K-12 and SH-K-13 for leaf weight; SH-K-1, SH-K-2, SH-K-10, SH-K-11, SH-K-21, SH-K-24 and *Jumadari* for number of pickings; SH-K-

10, SH-K-21, SH-K-24, SH-K-28, SH-K-33, Khanyari and Jumadari for leaf vield: SH-K-28 for leaf length: SH-K-24 for leaf breadth; SH-K-24 and SH-K-33 for leaf size; SH-K-8, SH-K-12 and Khanyari for average stalk weight; SH-K-1 and SH-K-24 for blade: midrib ratio. SH-K-24 for days to first leaf picking as well as duration of picking. These genotypes were above average in stability for various traits and would do better under low management / poor environments. In the present study, no genotype was found stable for yield across environments. However, genotypes SH-K-28, SH-K-33, Khanyari and SH-K-21 could be considered stable on the basis of higher average response for many characters. Similar findings have also been reported by Chaubey et al. [2] in cabbage. Further the compensating mechanism of component characters in imparting homeostasis being important [3], these genotypes would be useful in future breeding programmes as in a homeostatic genotype, the component characters may shift in a compensatory manner in changing environment to give consistent performance of the economic character.

References

- Eberhart S. A. and Russel W. A. 1966. Stability parameters for comparing the varieties. Crop Sci., 6: 36-40.
- Chauby T., Shivastava, B. K. and Singh M. 2000. Stability analysis of yield and quality contributing characters in cabbage. Veg. Sci., 27: 45-50.
- Grafius K. J. 1959. Heterosis in barley. Agron. J., 51: 551-554.