Indian J. Genet., 66(1): 69-70 (2006)

Short Communication

Anthocyanins affecting differential spathe colour expression in diverse genotypes of Anthurium andreanum Linden

Asish K. Binodh¹ and P. Maya Devi

Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, Thiruvananthapuram 695 522

(Received: May 2005; Revised: October 2005; Accepted: March 2006)

Anthurium (Anthurium andreanum Linden.) the semiterrestrial and perennial epiphytic plants with creeping arborescent stem is tropical plant of great beauty grown for its colourful long lasting flowers. Valuable part, the cordate blistered and glossy spathe is a modified leaf subtending the fleshy inflorescence bearing small sessile flowers. Spathe colour gives a sense of aesthetic pleasure to human beings. So there is a need for developing new and improved cultivars with different colour. The relative concentrations of anthocyanin and its influence on spathe colour in 50 morphologically diverse and taxonomically complex genotypes of anthurium showing variations in spathe colour, shape, size and other commercially valuable

(a) MW X FR (2)

morphological characters were utilized for the study. The selected plants of the above 50 genotypes were raised in pot culture experiment in a completely randomised design with three replications. Spathes were harvested within two weeks of unfurling or when half of the spadix lengths had changed colour. Estimation of anthocyanin was done as per the method described by Rangana [1].

From the analysis, it was concluded that the mean total anthocyanin content ranged from 26.81 mg/g (pink spathe) to 710.79 mg/g (maroon spathe) (Table 1). Low anthocyanin content of 26.81 mg/g was exhibited by the genotype having pink coloured spathe (Fig. 1.(d),

(b) MW X PR

(c) MW X FR (1)

(e) NO X CR

(d) FR X KR

(f) OG X KR

Sł.	Genotypes	Anthocyanin	Spathe	Si.	Genotypes	Anthocyanin	Spathe
No.		content (mg/g)	_colour	No		content (mg/g)	colour
1	MO×LR	221.21	Red	26	FR × DT (2)	149.01	Dark red
2	MO × KR (1)	162.25	Red	27	FR×KR	26.81	Pink
3	MO × KR (2)	167,58	Dark red	28	FR×LR	393.41	Dark red
4	KO×CR	201.63	Red	29	F8 × MW (1)	311.95	Red
5	KO×LR	192.46	Red	30	$FR \times MW(2)$	70.27	White
6	KO × DT	200.89	Bright red	31	MW × FR (1)	160.56	White with pink veins
7	KR × DT	153.08	Dark red	32	MW × FR (2)	33.94	White
8	KR×LR	190.42	Dark red	33	MW×PR	166.33	White
9	KR×CR	276.17	Deep maroon	34	$MW \times DT$	228.44	Maroon
10	LR × DT	695.51	Deep maroon	35	TR×MW	179.22	Maroon
11	$LR \times PR$	171.09	Maroon	36	$LJ \times MW$	156.14	Dark red
12	LR × FR	234.55	Red	37	PR×KR	142.90	Bright red
13	NO×TR	214.87	Bright red	38	PR×MO	173,59	Bright red
14	NO × PR	190.77	Dark red	39	PR × DT	451.12	Dark red
15	NO × DT	240.73	Red	40	PR×OG	435.16	Bright red
16	NO × CR	163.95	Orange	41	PR×MW	149,44	Light orange
17	NO×LR (1)	225.05	Red	42	PR × LR (1)	376.10	Dark red
18	NO × LR (2)	292.56	Maroon	43	PR × LR (2)	245.42	Deep maroon
19	OG×KR	139.17	Dark orange	44	PR ×LR (3)	710.79	Maroon
20	OG × LR	163.27	Orange	45	PR × FR (1)	267.82	Maroon
21	OG × DT	120.84	Dark red	46	$PR \times FR(2)$	448.74	Bright red
22	HR×LW	411.82	Dark red	47	PR×FR (3)	232.85	Red
23	FR×CR(1)	222.65	Dark red	48	$PR \times FR(4)$	268.50	Dark red
24	FR × CR (2)	225.05	Dark red	49	DT×KR	186.69	Red
25	FR × DT (1)	86.22	Dark red	50	DT×FR	214.53	Bright red

Table 1. Anthocyanin concentrations of spathe colour in 50 genotypes of anthurium

MO - Mauritius Orange, OG - Orange Glory, LJ - Lady Jane, KO - Kalympong Orange, HR-Honeymoon Red, PR - Pompon Red, KR - Kalympong Red, FR - Fla Red, DT - Dragon's Tongue Red, LR - Liver Red, MW - Merengue White, CR - Chilli Red, NO - Nitta Orange, TR - Tropical Red, LW - Lima White

FR x KR) while those of high anthocyanin content (710.79mg/g) was exhibited by the genotype having maroon spathe. The colour ranged from red, orange, pink, white and coral. Genotypes having varying red coloured spathe viz., bright red, red and dark red have anthocyanin content varying from 86.22 mg/g to 451.12 mg/g. This indicated that these genotypes may possess both the pigments viz., pelargonadin 3 rhamnosyl glucoside and cyanidin 3 rhamnosyl glucoside in high concentration [2]. For the genotype having deep maroon spathe, the anthocyanin content was 695.51mg/g. For white coloured spathe, the anthocyanin content ranged between 33.94mg/g [Fig. 1(a) MW × FR (2)] to 166.33mg/g [Fig. 1(b) MW × PR]. The results revealed that in white cultivars both of the pigments may be absent. These results are in conformity with Iwata et al., [2]. In genotypes having orange spathe, the anthocyanin content ranged from 139.17 [Fig. 1(f) OG × KR] to 163.95 mg/g [Fig. 1(e) NO × CR]. MW × FR(1) with anthocyanin content 160.56 mg/g had White spathe with pink veins [Fig. 1(c) MW × FR(1)]. Obaki type genotypes i.e. double coloured spathe had anthocyanin content of 120.84 mg/g [3-4]. Two major genes M and O were responsible for the five major colours i.e., red, orange, pink, coral and white. Red and pink coloured spathes have both M and O genes. The incremental effect of M appeared to be greater than that of O and therefore, the intensity of colour decreased from red to pink [5]. In the present study the different spathe colour *viz.*, red, orange, pink and white expression revealed that the genes M and O may be responsible for expression of varied spathe colour. It is concluded that in the genotypes having high anthocyanins, the spathe colour was marcon while in low anthocyanin content the spathe colour was pink. The spathes of red based colours are usually having high anthocyanin content which ultimately increases the aesthetic sense of humans. Hence, the genotypes having red based spathe colours, if exploited commercially will improve the export quality of cut flower anthurium.

References

- Rangana S. 1977. Manual of Analysis of Fruit and Vegetable Products. Tata McGraw-Hill Publishing Company, New Delhi, p. 634.
- Iwata R.Y., Tang C. S. and Kamemoto H. 1979: Anthocyanins of Anthurium andreanum Lind. J. Amer. Soc. Hort. Sci., 104, 464-466.
- Mayadevl P. 2001. Genetic divergence in Anthurium andreanum Linden. Ph.D. thesis, Kerala Agricultural University, Thrissur, p. 242.
- 4. Mercy S. T. and Dale B. 1994. Anthurium. St. Joseph's Press, Thiruvananthapuram. p. 64.
- Kamemoto H. and Nakasone H. Y. 1963. Evaluation and improvement of anthurium clones. Hawaii Agr. Expt. Sta. Tech. Bul. No. 58.