Indian J. Genet., 57 (1): 32–35 (1997)

INHERITANCE OF SOME INDUCED MUTANT CHARACTERS IN JUTE (CORCHORUS OLITORIUS L.)

P. PARIA AND S. L. BASAK

Central Research Institute for Jute and Allied Fibres, Barrackpore West Bengal 743101

(Received: August 21, 1993; accepted: May 18, 1994)

ABSTRACT

Induced mutant characters of jute (*Corchorus olitorius* L.) such as, chlorina, virescent, yellow, patchy albino leaf colour; waxy leaf surface; ribbon, cordate, trifid leaf forms; distant and extreme leaf serration; dwarf, stiff, lazy stem, drooping top, bushy stem, white stem; foliaceous stipule; white flower and round pod, were all monogenic recessive in nature. The F₂ generation of their crosses with the genotypes having wild type characters segregated into 3:1 ratio for each mutant characters. Gene symbols for these characters are proposed. No linkage could be detected amongst these mutants.

Key words: Corchorus olitorius, mutant, inheritance, gene symbols.

Inheritance of qualitative characters in jute has been studied poorly due to lack of availability of distinct phenotypes. However, in the recent past series of attempts have been made to induce mutation using physical mutagens [1, 2] and many qualitative mutations have been reported [2] but inheritance of some of them has not yet been worked out. This paper reports the inheritance of some of the induced mutations in *Corchorus olitorius*.

MATERIALS AND METHODS

Induced mutations for the following characters were used to investigate their inheritance.

1. *Leaf colour*: (a) chlorina, (b) virescent, (c) yellow, (d) patchy albino. 2. *Leaf surface*: waxy. 3. *Leaf shape*: (a) ribbon (leaf blade is extremely reduced), (b) cordate, (c) trifid (leaf blade is trilobate, each lobe with a pointed tip). 4. *Leaf serration*: (a) distant serration (as named by Thakare et al. [1], who described it first), (b) extreme serration (margin double serrate, so

Present address: National Research Centre for Groundnut, Junagadh 362001.

February, 1997]

named by Thakare et al. [1]). 5. *Leaf texture:* leathery leaf. 6. *Stem:* (a) dwarf (the height reduced to 1/3 or 1/4, internodes highly condensed, (b) stiff stem (does not bend easily, breaks under pressure), (c) lazy stem (soft, bend easily on mild pressure, somewhat prostrate), (d) drooping top (tip of stem droops even when fully turgid), (e) bushy stem (almost all axillary buds develop into thin branches, giving bushy appearance), (f) white stem (instead of usual green pigment on bark, absence of green pigment causes white appearance of stem). 7. Foliaceous stipule (instead of linear, filamentous stipules larger like rudimentary leaves). 8. White flower. 9. Round pod (capsules globular).

The above true breeding mutants were crossed with the standard type having wild type allele for the mutant character. The F_2 seeds were obtained by selfing F_1 plants. The F_2 segregations were tested by χ^2 test for 3:1 ratio.

RESULTS AND DISCUSSION

The pooled F_2 segregation data are presented in Tables 1 and 2. From the tables it will be seen that the above mentioned induced mutant character are monogenic recessive to their corresponding wild types. Data showed good fit to 3:1 ratio in each case (Tables 1, 2). Though some of these mutants have been reported [1, 2] earlier but gene symbols for them were not

Characters		F ₁	No. of	F ₂ plants			χ ²	Р
normal	mutant	pheno- type	F ₂ families	normal	mutant	total	(3:1)	
Leaf colour								
Green	Chlorina	Green	7	4338	1370	5708	3.036	0.10-0.05
				Heterogeneity				0.900.75
Green	Virescent	Green	5	3837	1201	5038	3.623	0.10-0.05
			•	Heter	o gen eity		3.117	0.50-0.25
Green	vellow	green	6	3710	1229	4939	0.098	0.900.75
	,	0		Heterogeneity			1.666	0.90-0.75
Green	Patchy	Green	5	2960	943	3903	0.133	0.75-0.50
	albino			Heter	ogeneity		11.032	0.03-0.01
Leaf surfac	e:							
Glabrous	Waxy	Glabrous	7	4056	1316	5372	0.724	0.50-0.25
	•			Heter	ogeneity		6.980	0.25-0.10
Leaf shape	:							
Normal	Ribbon	Normal	6	4544	1447	5991	2.242	0.25-0.10
				Heter	ogeneity		2.925	0.50-0.25
					·			(Contd.)

 Table 1. F₂ segregation of leaf mutations in C. olitorius

P. Paria and S. L. Basak

Table 1. (contd.)

Characters		F ₁	No. of	F ₂ plants			χ ²	Р
normal	mutant	pheno- type	F ₂ families	normal	mutant	total	(3:1)	
Leaf colour:								
Lanceolate	Cordate	Lanceolate	5	4287 Hetero	1445 Seneity	5732	0.134 5.570	0.75-0.50 0.25-0.10
Entire	Trifid	Entire	3	1003 Hetero	309 Ogeneity	1312	1.467 0.048	0.250.10 0.99
Leaf serratio	on:							
Normal	Distant	Normal	8	5180 Hetero	1 64 0 ogeneity	6820	3.252 2.661	0.10-0.05 0.90-0.75
Normal	Extreme	Normal	6	5445 Hetero	1737 ogeneity	7182	2.541 1.950	0.25-0.10 0.90-0.75
Leaf texture	:							
Normal	Leathery	Normal	5	3469 Hetero	1096 ogeneity	4565	2.392 1.561	0.25–0.10 0.75–0.50
Stipule shar	pe:	1. A.						
Filiform	Foliaceous	Filiform	7	4146 Hetero	1374 ogeneity	5520	0.035 7.670	0.90-0.75 0.25-0.10

proposed except for dwarf [2]. Hence, gene symbols for other characters studied in this work are proposed as follows.

1. Green leaf (Cl): chlorina (cl); 2. green leaf (Vs): virescent (vs); 3. green leaf (Y1): yellow (yl); 4. green leaf (Pal): patchy albino (pal); 5. glabrous leaf surface (Wx): waxy leaf surface

Table 2	2	F ₂ segregation of stem, flower and pod mutations in C. olitorius

Characters		F ₁	No. of	F ₂ plants			χ ²	Р
normal	mutant	pheno- type	F ₂ families	normal	mutant	total	(3:1)	
Stem muta	tions:	•				-		
Tall	Dwarf	Normal	4	2413	771	3184	1.047	0.50-0.25
					Heterogeneity		1.444	0.90-0.75
Flexible	Stiff	Flexible	5	3756	1 177	4933	3.420	0.10-0.05
					Hetero	geneity	1.997	0.75-0.50
Erect	Lazy	Erect	3	776	333	1109	1.403	0.25-0.10
	-				Heterogeneity		3.495	0.10-0.05
		<u> </u>						(Contd.)

February, 1997]

Table 2 (contd.)

Characters		F ₁	No. of	F ₂ plants			χ ²	P
normal	mutant	pheno- type	F ₂ families	normal	mutant	total	(3:1)	
Green	White	Green	6	3321	1033	4354	3.773	0.10-0.05
					Heterogeneity		1.366	0.90-0.75
Normal	Bushy	Normal	4	1693	583	2276	0.412	0.75-0.50
	*				Heterogeneity		1.998	0.50-0.25
Erect	Drooping	Erect	6	5541	1769	7310	2.627	0.25-0.10
top	top	top			Heterogeneity		3.656	0.50-0.25
Flower colo	ur:							
Yellow	White	Yellow	4	1 964	647	2611	0.067	0.90-0.75
					Heterogeneity		2.900	0.25-0.10
Pod shape:								
Elongate	Round	Elongate	4	1654	508	2162	3.386	0.10-0.05
					Hetero	geneity	0.207	0.95-0.90

(wx); 6. normal leaf texture (Lt) : leathery leaf (lt); 7. normal leaf form (R1) : ribbon leaf (rl); 8. lanceolate leaf (Cd) : cordate leaf (cd); 9. entire leaf (Tf) : trifid leaf (fb); 10. normal serration (Se) : extreme serration (se); 11. normally spaced serration (Sd) : distant serration (sd); 12. flexible stem (Stf) : stiff stem (stf); 13 erect stem (Lz) : lazy stem (lz); 14. green stem Wst) : white stem (wst); 15. normally branched stem (Bst) : bushy stem (bst); 16. erect stem top (Std) : drooping stem top (std); 17. filiform stipule (Fls) : foliaceous stipule (fls); 18. yellow flower (Wf) : white flower (wf); and 19. elongate pod (Rp) : round pod (rp).

The digenic segregation ratios of the above mentioned genes were used to detect linkage, if any, by linkage χ^2 test. However, no linkage was detected.

REFERENCES

- 1. R. G. Thakare, D. C. Joshua and N. S. Rao. 1973. Induced viable mutations in *Corchorus olitorius*. Indian J. Genet., 33: 294-228.
- 2. N. Ghosh and S. Sen. 1971. Inheritance of X-ray induced leaf and stem mutations in jute (*Corchorus olitorius*). Z. Pflanzenzuchtg., 65: 265–272.