GENETIC STUDIES IN RICE (ORYZA SATIVA L.). INHERITANCE AND LINKAGE RELATIONSHIP OF LEAF ANGLES

S. K. NADAF, J. V. GOUD AND R. PARAMESHWARAPPA

Division of Genetics and Plant Breeding, University of Agricultural Sciences Dharwad 580005

(Received: October 24, 1991; accepted: June 10, 1995)

ABSTRACT

Inheritance and linkage relationships of leaf angles, i.e. angles of leaf attachment and openness and flag leaf angle were studied in a cross between two upland cultivars of rice, namely, D 6-2-2 (drooping leaf) and HY-256 Purple (acute leaf angles). Acute leaf angle was a dominant trait under the control of 4-5 nonallelic mutually interacting genes. The joint segregation pattern revealed the existence of common pleiotropic genes with similar and differential action between each of these angle characters coupled with linkage between only antiinhibitory genes. Nature of inheritance and interrelationship of these leaf angles are discussed and, based on the genetic hypotheses, genotypic constitution of each parent proposed.

Key words: Oryza sativa, rice, inheritance, pleiotropy, linkage, leaf angles.

The literature on linkage groups in *indica* rice was summarised by Misro et al. [1] and Goud and Nadaf [2, 3]. This paved the way for a better understanding of the linkage groups in rice. In rice, though genetics of traits has been studied since 1908, the linkage maps are far from complete. The present investigation has been taken up to continue the construction of linkage maps in rice.

MATERIALS AND METHODS

Investigation on the inheritance of leaf angle was taken up in a cross between two upland cultivars, viz. D 6-2-2 (green variety with wide/drooping leaf angles) and HY-256 Purple (purple variety with acute leaf angles). The F₂ consisted of 2458 plants.

Three types of leaf angles are distinguished in rice [4]. The first two types are related to the leaf blade (first leaf below the flag) and are called "angle of attachment" and "angle of openness." The third type is related to the flag leaf, hence called "flag leaf angle." The leaf

angles were recorded at flowering stage using a protractor [5] and subsequently classified [4]. Angle up to 30° was considered as acute (erect), and above 30° as wide (horizontal) in case of angle of leaf attachment and flag leaf angle. In respect of angle of leaf openness, the angle up to 30° was considered as acute (erect), and above 30° as drooping or descending.

The recombination values were computed according to Kolhe [6].

RESULTS AND DISCUSSION

The phenotypes of the parents, F₁ and F₂ ratios are presented in Table 1.

Character	Parent phenotype		F1	Ratio	O/E	F ₂ frequency		χ^2	Р
	D 6-2-2	HY-256 Purple		tested		acute	wide or drooping		
Angle of leaf	Wide	Acute	Acute		0	1667.00	791.00		
attachment				702 : 322	Ε	1685.07	772.93	0.616	0.500.30
Angle of leaf	Drooping	Acute	Acute		0	1673.0	785.00		
openness				702 : 322	Ε	1685.07	772.93	0.275	0.700.50
Flag leaf angle	Wide	Acute	Acute		0	1880.00	578.00		
				195 : 61	Ε	1872.30	585.70	0.133	0.80-0.70

Table 1. Inheritance of leaf angle in the cross between strains D 6-2-2 x HY-256 Purple of rice

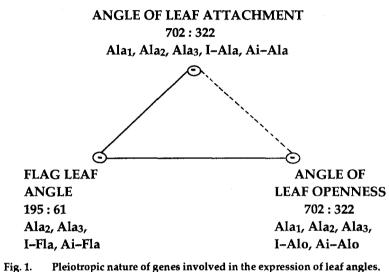
Inheritance studies. Acute/erect leaf angles were dominant in this study, in contrast to the single report [7] published on this aspect, where it was stated to be controlled by one recessive gene. Chang and Bardenas [4], however, concluded that inheritance of leaf angle was more complex. In the present investigation, the segregation patterns for acute to wide angle/drooping or descending leaf showed that they are not simple in their inheritance. On critical examination, genetic hypotheses were formulated and confirmed through χ^2 analyses.

The results (Table 1) show that angle of leaf attachment segregated in the pentagenic ratio of 702 acute : 322 wide angles, which was explained by the hypothesis of three complementary duplicate genes, where any two of them together would complement to cause acute angle of attachment, along with one inhibitory gene and one anti-inhibitory gene. Angle of leaf openness also segregated in the pentagenic ratio of 702 acute : 322 wide/drooping or descending which could be explained by a similar hypothesis as for angle of leaf attachment. However, flag leaf angle segregated into 195 acute : 61 wide, which indicated that two duplicate genes along with an inhibitory gene and anti-inhibitory gene control this character.

Character pair and F ₂ ratio	Basis of expectation	Expected ratio	Genes	Per cent recombi-	O/E	L.	henotypic	Phenotypic frequncies	s	χ^2	d
	cyperation			nation		AB	Ab	aB	ab		
					0	1270.0	397.0	403.0	388.0		
Angle of leaf	Independence	492804:226044:	I		щ	1155.2	529.9	529.9	243.0	161.6	< 0.001
attachment (702 : 322)	Three genes	226044:103684 9126:2106:2106:	1	1	ы	1369.1	315.9	315.9	457.0	62.4	< 0.001
VS Amela of lock	common	3046	10 11 - 11 IV	74.75	Ľ	01001	0 100	0100	0.100		
onenness	гликаўс	1	UN-IN-BIA-IN	04-01	4	0.4001	0.100	0.100	6.160	7 .07	
(702 : 322)											
					0	1523.0	144.0	357.0	434.0		
Angle of leaf	Independence	136890:42822:	ļ	I	ш	1283.5	401.5	588.8	184.2	640.0	< 0.001
attachment (707 · 322)	Two cenes	62790:7642 9126-2106-		I	μ	13691	315.9	503.7	269.7	253.4	< 0.001
AS - SA	common	3354:1798			1			-	1		
Flag leaf angle (195 : 61)	Linkage	Ι	Ai-Ala-Ai-Fla	9.88	ш	1532.8	152.2	339.5	437.5	1.4	0.80-0.70
					0	1520.0	153.0	360.0	425.0		
Angle of leaf	Independence	136890:42822: 63700-7643	ł	I	ш	1283.5	401.5	588.8	184.2	601.2	< 0.001
(702 : 322) vs	Two genes common	9126:2106: 3354:1798	I	I	ш	1369.1	315.9	503.2	269.7	230.8	< 0.001
Flag leaf angle (195 : 61)	Linkage	1	Ai-Alo-Ai-Fla	11.33	ш	1525.4	159.7	346.9	426.0	0.8	0.90-0.80

Table 2. Joint segregation of angle of leaf attachment (702:322) angle of leaf openness (702:322) and the final leaf angle (195:61) in ${\rm F}_2$ generation

340


S. K. Nadaf et al.

[Vol. 55, No. 3

August, 1995]

Combined segregation. Table 2 shows the joint segregation pattern of leaf angles which revealed the existence of common pleiotropic genes between each of these angle characters

coupled with linkage between only antiinhibitory genes. The three leaf angles formed a triangle of pleiotropic effects (Fig. 1), and it was established that the angles of leaf attachment and leaf openness have three common genes, Ala1, Ala2 and Ala3, which act similarly as complementary duplicate genes for determining acute

angle. Two of these three genes also cause acute angle of flag leaf behaving differentially, only as duplicate genes.

All the three genes of anti-inhibitory nature, which control leaf angles, namely, angle of attachment (Ai-Ala), angle of leaf openness (Ai-Alo), and flag leaf angle (Ai-Fla) are linked in the following sequence: Ai-Ala — Ai-Fla — Ai-Alo (Fig. 2). The genes Ai-Ala and Ai-Alo

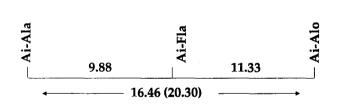


Fig. 2. Linkage map showing the relative positions of three genes. Crossover values are given in percentage. The crossover value modified by applying the Kosambi [9] formula is given in parentheses.

maps at the extreme ends with a distance of 16.4 map units. Since these three genes were not studied earlier and showed independent assortment with all other genes for pigmentation and morphological characters under investigation [8], this group does not form part of any of the 12 linkage groups so far constructed and remains a miscellaneous group. Based on the above hypothesis of leaf angles, the genotypic constitution of each parent was derived as:

Character	D 6-2-2	HY-256 Purple
Angle of leaf attachment	ala1 ala1 ala2 ala2 ala3ala3 i-Ala i-Ala ai-Ala ai-Ala	Ala1 Ala1 Ala2 Ala2 Ala3 Ala3 I-Ala I-Ala Ai-Ala Ai-Ala
Angle of leaf openness	ala1 ala1 ala2 ala2 ala3 ala3 i-Alo i-Alo ai-Alo ai-Alo	Ala1 Ala1 Ala2 Ala2 Ala3 Ala3 I-Alo I-Alo Ai-Alo Ai-Alo
Flag leaf angle	ala1 ala1 ala2 ala2 i-Fla i-Fla ai-Fla ai-Fla	Ala1 Ala1 Ala2 Ala2 I-Fla I-Fla Ai-Fla Ai-Fla

ACKNOWLEDGEMENT

The first author is grateful to the ASPEE Agricultural Research and Development Foundation, Bombay, for fellowship.

REFERENCES

- B. Misro, R. H. Richharia and R. Thakur. 1966. Linkage studies in rice (*Oryza sativa* L.). VII. Identification of linkage groups in *indica* rice. Oryza (Special Issue), 3: 96–105.
- J. V. Goud and S. K. Nadaf. 1985. Linkage groups in rice with special reference to indica group—a review. Proc. First Natl. Symp. Genet. Rice Improvement, April 16–17, 1985, Hyderabad.
- 3. J. V. Goud and S. K. Nadaf. 1990. Present status of linkage groups in *indica* rice (*Oryza sativa* L.). Proc. Intern. Symp. Mol. Genet. Approaches to Plant Stress. February 14–17, 1990, New Delhi.
- 4. T. T. Chang and E. A. Bardenas. 1965. Morphology and varietal characteristics of the rice plant. Tech. Bull. IRRI, 4: 18.
- 5. S. Yoshida, D. A. Forno, J. H. Cock and K. A. Gomez. 1976. Laboratory Manual for Physiological Studies of Rice (3rd edn.). IRRI, Manila, Philippines: 83.

- 6. A. K. Kolhe. 1972. Direct method of calculating quadratic expression from phenotypic classes. Indian J. Genet., **32**: 35–36.
- 7. Anonymous. 1971. Technical Report. Central Rice Research Institute, Cuttack: 203.
- 8. S. K. Nadaf. 1989. Studies on the Inheritance and Interrelationship of Qualitative Characters Involving Pleiotropy and Linkage in Rice (*Oryza sativa* L.). Ph. D. Thesis. University of Agricultural Sciences, Dharwad: 611.
- 9. D. D. Kosambi. 1944. The estimation of map distances from recombination values. Ann. Eugen., 12: 172–175.