COMBINING ABILITY FOR YIELD AND ITS COMPONENTS IN BLACKGRAM (VIGNA MUNGO L. HEPPER)

P. SHANMUGASUNDARAM AND S. R. SREE RANGASAMY

School of Genetics, Tamil Nadu Agricultural University, Coimbatore 641003

(Received: January 3, 1992; accepted: June 7, 1993)

ABSTRACT

Combining ability analysis was done using 20 F_{15} and 20 F_{2} families obtained from a 5 x 5 diallel mating design for yield and its components, viz. clusters/plant, pods/plant, total dry matter, grain yield, harvest index, and 100-grain weight. Highly significant gca, sca and reciprocal variances were observed in both F_{1} and F_{2} generations for all the characters studied. The gca : sca variance ratio and the estimates of gca effects were similar in F_{1} and F_{2} generation for all the characters except for pods/plant. CO 4 and CO 5 were good general combiners for clusters/plant, total dry matter production, grain yield and 100-grain weight; UG 135 and UG 191 for high harvest index; and T 9 for clusters/plant.

Key words: Blackgram, Vigna mungo, combining ability.

Low yield in blackgram may be attributed to the poor harvest index when compared to the cereal crops like wheat. Locally available varieties are high in dry matter production and low in harvest index, while the varieties developed in North India have high harvest index, but poor in dry matter production under Tamil Nadu conditions. An attempt has been made in the present investigation to explore the possibilities of combining these characters by studying the F₁ and F₂ generations of a 5 x 5 diallel.

MATERIALS AND METHODS

Five parents, namely, CO 4, CO 5, UG 135, UG 191 and T 9, varying in dry matter production, harvest index, and their related components, were crossed in all possible combinations to make 20 crosses. Forty five entries comprising 20 F₁s, 20 F₂s and 5 parents were sown in randomised block design with three replications. Parents and F₁s were raised in single rows and F₂s in 10 rows each of 3 m length in each replication with the spacing of 45 cm between rows and 10 cm between plants. Observations were recorded on five random

Present address: Department of Rice, Tamil Nadu Agricultural University, Coimbatore 641003.

February, 1994]

Combining Ability in Blackgram

plants in hybrids and 50 plants in F₂s in each replication for five quantitative traits and harvest index calculated (Table 1). The replication mean values were utilised for statistical analysis. Combining ability analysis was done according to Method I, Model I of Griffing [1].

RESULTS AND DISCUSSION

The differences among parents and hybrids were significant in respect of all the characters. Combining ability analysis showed highly significant gca and sca variances in both F_1 and F_2 generations for all characters, indicating the presence of additive as well as nonadditive gene effects in the parents and hybrids for these characters. However, the gca : sca variance ratio suggested predominance of additive gene action in respect of clusters/plant, total dry matter, grain yield/plant, harvest index, and 100-grain weight, and nonadditive gene action for pods/plant. Significant reciprocal differences were observed for all the characters in both generations, indicating the role of cytoplasmic genes in the control of these characters in this crop.

The gca estimates indicated that the parents CO 4 and CO 5 were good general combiners for grain yield, clusters/plant, pods/plant, total dry matter and 100-grain weight. T 9 was a good general combiner for grain yield, clusters/plant, pods/plant and harvest index, while UG 135 and UG 191 were good general combiners only for harvest

Character	Generation	Parents with high gca and per se performance
Clusters/plant	Fı	CO 4 (0.60, 12.70), CO 5 (1.63, 18.70), T 9 (0.93, 16.00)
	F ₂	CO 4 (0.40, 12.70), CO 5 (1.12, 18.70), T 9 (0.32, 16.00)
Pods/plant	F ₁	CO 5 (4.66, 48.70), T 9 (8.22, 50.70)
•	F_2	CO 4 (2.66, 42.00), CO 5 (1.87, 48.70), T 9 (1.65, 50.70)
Dry matter yield/plant (g)	F_1	CO 4 (4.44, 27.80), CO 5 (5.18, 28.60)
	F ₂	CO 4 (4.37, 27.80), CO 5 (2.42, 28.60)
Grain yield/plant (g)	\mathbf{F}_1	CO 4 (1.33, 9.10), CO 5 (1.37, 10.10)
	F ₂	CO 4 (1.10, 9.10), CO 5 (0.55, 10.10)
Harvest index (%)	F ₁	UG 191 (0.19, 41.0), T 9 (0.12, 40.0)
	F ₂	UG 135 (0.22, 40.0), UG 191 (0.11, 41.0)
100-grain weight (g)	F ₁	CO 4 (2.95, 5.39), CO 5 (1.99, 4.86)
0 0 0	F ₂	CO 4 (2.91, 5.39), CO 5 (1.00, 4.86)

able 1. Desilable patents with then gea and per se periorihance in Diackgia	Fable 1.	Desirable	parents with	their gca and	per se p	erformance in	blackgram
---	----------	-----------	--------------	---------------	----------	---------------	-----------

Notes. Values in parentheses are gca and per se performance, respectively.

All gca values significant at 1% level.

Gene-	Cross	Yield	Gca effects		Sca	Other characters with	
ration		per plant (g)	P1	P2	effects	significant sca effects	
F1	CO 4 x UG 135	12.75	1.33**	- 1.56**	1.52**	Harvest index	
	CO 4 x T 9	16.75	1.33**	0.26	3.18**	Clusters/plant, pods/plant, total dry matter	
	CO 5 x UG 135	13.55	1.37**	- 1.56**	2.28**	Pods/plant, total dry matter	
	CO 5 x T 9	14.90	1.37**	0.26	1.78**	Pods/plant, total dry matter 100-grain weight	
	UG 135 x UG 191	9.85	- 1.56**	- 1.42	1.36**	Pods/plant, total dry matter 100-grain weight	
F ₂	CO 4 x UG 191	11.18	1.10**	- 0.87**	2.63**	Clusters/plant, pods/plant, total dry matter	
	CO 4 x T 9	9.91	1.10**	- 0.16	0.65*	Clusters/plant, total dry matter	
	CO 5 x UG 135	7.91	0.55*	- 0.61**	2.41**	Clusters/plant, pods/plant, total dry matter, harvest index	

 Table 2. Crosses with maximum sca effects in F1 and F2 generations for seed yield and their performance for other traits and gca effects of blackgram parents

*, **Significant at 5%, 1% levels, respectively.

index (Table 1). A multiple crossing programme involving these parents would offer good scope for improving yield by combining the total dry matter and harvest index. A good degree of correspondence between the gca estimates in F_1 and F_2 generations indicates the possibility of postponing the combining ability studies to F_2 generation to obtain more reliable information, where the problem of producing sufficient quantity of hybrid seeds is evident [2].

A perusal of the sca values and *per se* performance of the hybrids (Table 2) indicates that the crosses CO 4 x CO 5, CO 4 x T 9, CO 5 x UG 135, CO 5 x T 9, UG 135 x UG 191 and CO 4 x UG 191 produced superior and potential hybrids. The parents involved in these hybrids were either high x high (H x H) or high x low (H x L) with regard to gca effects except for one cross which involved L x L parents. In case of H x H gca crosses, there are possibilities of complementary epistatic effect acting in the direction of additive effects of the good combiners [2]. The crosses of H x L gca group with the expression of positive sca effects may be due to the dominant x recessive interaction, expected to produce desirable segregates [3]. In the case of L x L crosses, with high sca, nonadditive type of variation can be exploited by multiple crosses followed by intermating among desirable segregates. February, 1994]

4

REFERENCES

- 1. B. Griffing. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci., 9: 463–493.
- 2. M. F. Haque, D. K. Ganguli and A. K. Mishra. 1988. Combining ability and heterosis in urd bean. Indian J. Pulses Res., 1: 6–11.
- 3. D. C. Langham. 1961. The high-low method of improvement. Crop Sci., 1: 376–378.