Indian J. Genet., 51 (4): 445–447 (1991)

GENETICS OF ISOZYME VARIATION IN CUCUMIS MELO L.

V. S. SUJATHA^{*} AND V. S. SESHADRI

Division of Vegetable Crops, Indian Agricultural Research Institute, New Delhi 110012

(Received: April 5, 1990; accepted: May 21, 1991)

ABSTRACT

Of the 14 isozyme loci scored in *Cucumis melo*, 11 were monomorphic and 3 polymorphic with two alleles at each locus. Genetical studies proved monogenic nature of inheritance of the alleles at all the three loci. While PRX_{2n} was completely dominant over PRX_{2b} , the two alleles at GOT₂ and EST₁ showed codominant reaction.

Key words: Isozymes, inheritance, Cucumis melo,

MATERIALS AND METHODS

Isozyme variation in 32 melon (*Cucumis melo* L.) varieties was studied for four enzyme systems [1]. Of the 14 loci scored, 11 were monomorphic while the remaining 3 (PRX₂, GOT₂ and EST₁) were polymorphic, with two alleles at each locus. The results of genetical studies on these variations are presented in Tables 1, 2 and 3.

A perusal of Table 1 indicated that the parent varieties were homozygous at the PRX₂ locus. In F₁, the Hara Madhu type (PRX_{2a}) showed complete dominance over that of cv. Phut (PRX_{2b}). There was no difference between reciprocal crosses. The χ^2 values for F₂

 Table 1. Segregation in the progenies of a cross between the varieties Hara Madhu and Phut of Cucumis melo for the PRX2 locus

Par	rents		F	71				B	C1	χ²	χ²
Hara	Phut	(HM	xP)	(Px)	HM)	F	2	(F	xP)	for	for 1:1
Madhu (HM) PRX _{2a}	(Р) PRX _{2b}	PRX _{2a}	PRX _{2b}	PRX _{2a}	PRX _{2b}	PRX _{2a}	PRX _{2b}	PRX _{2a}	PRX2b	3:1 in F2	in BC1
12	12	16	0	16	0	32	13	7	9	0.36	0.25

Present address: Department of Plantation Crops & Spices, College of Horticulture, Kerala Agricultural University, Vellanikkara 680 654. V. S. Sujatha and V. S. Seshadri

446

.

November, 1991]

Parents			F1							F ₂				E	BC ₁ F ₁			 χ ²	
Hara	ara Phut Hara Madhu		Phut x Hara			A	В	AB	ABC	x Phut			1:2:1	1:1					
Madhu	(GOT _{2b})			X			Μ	adhu					-	A I	3 AF	3 ABC	in	in	
(GOT _{2a})	1			Phut		Ā	В	AB	ABC								F ₂	BC	
A	B	A	B	AB	ABC			_						•					
14	14	0	0	0	10	0	0	0	10	11	13	0	16	0	8	0	1.8	0	

Table 2. Genetic studies on variation at GOT2 locus of Cucumis melo

segregation and BC generations were calculated and found to fit a monogenic ratio (Fig. 1:1).

The variant isozyme for GOT₂ was found in the variety Phut. The standard isozyme was named GOT_{2a} and the variant, GOT_{2b} . In F₁, in addition to parental bands, a new band with intermediate mobility can be seen (Fig. 1:2). This indicated the dimeric nature of the GOT protein involved. The results of genetical analysis, as can be seen from Table 2, clearly indicate the monogenic nature of inheritance of alleles with codominance for the variants in the heterozygote.

Table 3. Segregation in the progenies of cross between the varieties Kachri and Hara Madhu of Cucumis melofor the EST1 locus

Pare	ent	·····	F1	······································		χ^2 for		
Hara Madhu	Phut EST1b	EST _{1a}	EST _{1b}	EST _{1a/b}	EST _{1a}	EST _{1b}	EST1a/b	1:2:1
10	10	0	0	20	14	11	17	1.95

As can be seen from Fig. 1:3, the alleles at EST₁ (EST_{1a}, the standard, and EST_{1b}, the variant, found in var. Kachri) also are codominant. But unlike GOT, the EST protein is monomeric and no hybrid enzyme is formed in the heterozygote. The pattern of inheritance of the alleles fit a monogenic ratio (Table 3).

ACKNOWLEDGEMENT

The results reported in the communication formed part of the thesis for the Ph.D. degree of the Indian Agricultural Research Institute by the first author. Financial assistance from the Institute is gratefully acknowledged.

REFERENCE

1. V. S. Sujatha, V. S. Seshadri, K. N. Srivastava and T. A. More. 1991. Isozyme variation in muskmelon *Cucumis melo* L. Indian J. Genet., **51** (4): 438–444.