Indian J. Genet., 51 (3): 352–356 (1991)

INHERITANCE OF GRAIN SIZE AND ITS INTERRELATIONSHIP IN RICE

K. PRASAD AND R. SEETHARAMAN

Central Rice Research Institute, Cuttack 753006

(Received: December 30, 1988; accepted: October 20, 1990)

ABSTRACT

Inheritance of grain size, nature of panicle, awning and plant habit was studied in two crosses. Roti, a tall variety with normal panicles having long grains was crossed with two phenotypically similar dwarf mutants with cigar shaped panicles having short and round grains. Monogenic and trigenic ratios for grain size were obtained in F₂ generation. Dwarf plant habit was associated with cigar shaped panicle possessing short and round grains, indicating pleiotropic gene action. Digenic and tetragenic ratios were obtained for awning, indicating two and four gene interactions for expression of awns in these crosses.

Key words: Inheritance study, grain size, rice.

Grain size in rice is reported to be controlled by one or two major genes. The gene for short grain is dominant over that for long grain [1–3], although the simple dominance of the gene for long grain over that for short grain has also been reported [4, 5]. Alam [3] reported complementary gene action involving two dominant genes for long grain. A polygenic system for grain inheritance was also proposed [5–8].

Compact panicle habit was reported to be controlled by a pair of recessive genes [6,9]. Seetharaman and Srivastava [10] reported pleiotropic effect of the gene controlling short height and cigar shaped panicle in a few indica varieties. The present investigation provides additional information on the inheritance of grain size, panicle habit and plant height and relationship of genes controlling these characters.

MATERIALS AND METHODS

The material consisted of three parents: Roti, a tall variety from Madhya Pradesh with normal panicles having long grains (13.15 mm) with awns; Club mutant obtained from Sri

Present address: Central Rainfed Upland Rice Research Station, Hazaribag 825301.

August, 1991]

Inheritance of Grain Size in Rice

Lanka, short statured with cigar shaped panicles and short, round grains; and Dwarf mutant with cigar shaped panicles and short, round grains, derived from the cross IR 8 x Basumati 370. The Dwarf mutant is phenotypically similar to the Club mutant but its grain is slightly longer. The Dwarf and Club mutants were crossed to Roti and the F₁, F₂ and F₃ generations were grown. Data were collected on grain size, nature of panicle, awning and plant habit.

RESULTS AND DISCUSSION

Roti x Dwarf mutant. The characters of the parents and F_1 plants are presented in Table 1, and the nature of segregation for different characters in F_2 in Table 2. Variation in grain size of the parents, F_{15} , and F_2 segregates can be seen in Fig. 1. Monogenic ratios were obtained for long vs short and round grain, normal vs cigar shaped panicle, and tall vs dwarf plant. Dwarf plant height was associated with cigar shaped panicle producing short and round grain, indicating pleiotropic gene action. See tharaman and Srivastava [10] in their studies suggested that Su-T gene acted as a suppressor for height. The gene had pleiotropic effect on other characters.

Material	Plant habit	Grain size	Nature of panicle	Awning
Roti	Tall	Long	Normal	Awned
Roti x Dwarf mutant	Tall	Long	Normal	Awned
Roti x Club mutant	Tall	Short	Normal	Awnless
Dwarf mutant	Dwarf	Short, round	Cigar shaped	Awnless
Dwarf x Club mutants	Dwarf	Short, round	Cigar shaped	Awnless
Club mutant	Dwarf	Short, round	Cigar shaped	Awnless

Table 1. Characters of the parents and F1s in rice crosses

A 9 awned: 7 awnless ratio (Table 2) was obtained in F₂, indicating interaction of two pairs of complementary genes. The ratio was subsequently confirmed in F₃.

Character (expected F2 ratio)	F2 plants observed	χ²	Р	
Grain type (3:1)	636 long: 196 short round	0.93	0.50-0.30	
Nature of panicle (3:1)	636 normal: 196 cigar shaped	0.93	0.50-0.30	
Plant habit (3:1)	636 tall: 196 dwarf	0.93	0.50-0.30	
Awning (9:7)	494 awned: 338 awnless	3.30	0.10-0.05	

Roti x *Club mutant*. The segregation for different characters in F₂ (Table 3) showed monogenic ratio for tall plants with normal panicle vs dwarf plants with cigar shaped panicle. Association between dwarf height with cigar shaped panicle and short and round grain indicated pleiotropic gene action. Seetharaman and Srivastava [11] in the cross N 22 x Club mutant, however, reported some short statured plants in F₂ generation with normal panicle.

Unlike the first cross, the F₁ plants had short grain and segregation in the ratio of 39 short : 9 long : 16 short and round grains was obtained in F₂. The nature of segregation is due to three genes i.e., Kr₁, Kr₂ and S. The genes Kr₁ and Kr₂ are responsible for short and long grains, respectively. Gene Kr₁ is dominant over Kr₂. The third gene s, when recessive, has suppressing effect over Kr₁ and Kr₂, resulting in short and round grains. The effect of gene Kr₁ is not expressed in Club mutant due to the presence of s. The gene s has pleiotropic effect on panicle and grains. The genetic constitution of the parents thus would be:

Dwarf mutant:	kr1	kr1	Kr2	Kr2	SS
Variety Roti:	kr1	kr1	Kr2	Kr2	SS
Club mutant:	Kr ₁	Kr ₁	kr2	kr2	SS

As regards awning, the F₁ plants were awnless and a ratio of 9 awned : 247 awnless was obtained in F₂. The parents differ by four genes, out of which two are inhibitory. Cv. Roti possesses two genes An_a An_a An_b An_b (both necessary for awn development) and Club mutant carries two dominant inhibitors, I-An_a I-An_a I-An_b, which suppress the expression of An_a and An_b.

Character (expected F2 ratio)	F2 plants observed	χ ²	Р	
Plant habit (3:1)	620 tall: 176 dwarf	3.540	0.10-0.05	
Nature of panicle (3:1)	620 tall: 176 cigar shaped	3.540	0.10-0.05	
Grain type (39:9:16)	494 short: 126 long 176 short round	4.589	0.200.10	
Awning (9:247)	22 awned: 774 awnless	1.333	0.70-0.50	

Table 3. Mode of segregation in F2 generation of the cross Roti x Club mutant

Awning is generally dominant over awnless character. It has been reported earlier that the expression of awns was determined by one pair of genes [12, 13], two pairs of genes, duplicate factors An₁ An₁ An₂ An₂ [14–16], two complementary factors [17, 18] and three duplicate factors, An₁ An₁ An₂ An₂ An₃ An₃ [19, 20]. Misro et al. [21] suggested combined action of both major genes and polygenes.

Fig. 1. Variation in grain size of parents, F1s and F2 segregates. P1-Cv. Roti, P2-Dwarf mutant, and P3-Club mutant.

The cross between Dwarf and Club mutants did not segregate for grain size in F₂. This is due to the presence of the common recessive gene s in both the parents, which supressed the gene expression of Kr₁ of Club mutant responsible for the short grain character.

REFERENCES

- 1. K. Ramiah, S. Jobitharaja and S. D. Mudalliar. 1931. Inheritance of characters in rice. IV. Mem. Dept. Agric. Indian Bot. Ser., 18: 211–227.
- 2. S. K. Mitra and P. M. Ganguli. 1938. Inheritance of size and shape of grain in rice. Proc. 25th Indian Sci. Congr. Abstr. 13 (Agriculture).
- 3. M. Alam. 1939. Grain quality index of rice. Proc. 24th Indian Congr. Abst. 148 (Agriculture).
- 4. F. R. Parnell, G. N. Ramaswamy Ayyangar and K. Ramiah. 1917. Inheritance of characters in rice. I. Mem. Dept. Agric. Indian Bot. Ser., 9: 75–105.
- 5. B. B. Dave. 1939. Ann. Rept. Rice Res. Sta. Raipur (M.P.), 1938-39.

- 6. R. K. Bhide. 1926. Inheritance and correlation of certain characters in rice crosses. Poona Agric. Coll. Mag., 18: 76–85.
- 7. S. Hara. 1942. Genetical study on the offspring of a natural hybrid from rice plants involving a long grained variety. Agr. Hort. (Tokyo), 17: 743–744.
- 8. T. Morinaga, E. Fukushima and S. Hara. 1943. Inheritance on length of rice grain. Agr. Hort. (Tokyo), 18: 519–522.
- 9. K. Ramiah. 1930. The inheritance of characters in rice. III. Mem. Dept. Agric. Indian Bot. Ser., 18: 211–227.
- 10. R. Seetharaman and D. P. Srivastava. 1969. Inheritance of semidwarf stature and cigar shaped panicle in rice. Indian J. Genet., 29: 220-226.
- 11. R. Seetharaman and D. P. Srivastava. 1973. Further investigations in cigar shaped panicle in rice. Indian J. Genet., 33: 35–42.
- 12. Y. Hoshino. 1915. On the inheritance of flowering time in peas and rice. J. Coll. Agric. Sapporo, 6: 229–288.
- 13. J. W. Jones. 1927. Inheritance of awnedness in rice. J. Amer. Soc. Agron., 19: 830.
- 14. L.F. Chao. 1928. Linkages studies in rice. Genetics, 13: 133-169.
- 15. M. Alam. 1932. Agric. Live-Stk. (India), 1: 497-511.
- 16. S. K. Mitra and P. M. Ganguli. 1932. Some observations on the characters of wild rice hybrids. Indian J. agric. Sci., 2: 271–279.
- 17. K. Ramiah. 1935. Rice genetics. Proc. Abs. Econ. Biol., Coimbatore, 3: 411–432.
- 18. J. W. Grant. 1935. Ann. Rept. Rice Res. Off. Burma.
- 19. S. Ikeno. 1927. Bibl. Genet., 3: 245-312.
- 20. R. L. Sethi, B. L. Sethi and T. R. Mehta. 1937. Awnless and its inheritance. Indian J. agric. Sci., 7: 589-600.
- 21. B. Misro, R. Seetharaman and R. H. Richharia. 1961. Studies on World genetic stock of rice. II. Awning. Indian J. Genet., 21: 34–37.