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Abstract

Prediction of splice sites plays an important rolein predicting
the gene structure. Rice being one of the major cereal crops,
continuous improvement is possible with the prediction of
unknown genes associated with complex traits. Machine
learning techniques i.e., Artificial Neural Network (ANN)
and Support Vector Machine (SVM) have been successfully
used for the prediction of splice sites but comparison of
their performance has not been made yet to our limited
knowledge. Further, Random Forest (RF), another machine
learning method, has been successfully used and reported
to outperform ANN and SVM in areas other than splice site
prediction. In this study we have developed an approach to
encode the splice site sequence data of rice into numeric
form that are subsequently used as input in ANN, SVM and
RF for prediction of donor splice sites. The performances
were then evaluated and compared using receiving
operating characteristics (ROC) curve and estimate of area
under ROC curve (AUC), averaged over 5-fold cross
validation. Theresult reveals that AUC of RFis higher than
ANN and SVM which implies that it can be preferred over
SVMand ANN in the prediction splice sites.
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Introduction

Splicing is a process that allows for introns to be
removed and exons joined together to form mature
mRNA after transcription and further translation into
protein (Baten et al. 2006). The splice site junction is
found where an intron meets an exon. These splice
site motifs provide signals to allow for correct splicing
to occur. The splice sites are characterized as the
acceptor (3) and donor (59 splice sites in most of
the eukaryotes. In most of the situations, these signals

consist of invariant dinucleotides GT at the start and
AG at the end of the intron as well as partially
conserved nucleotides surrounding splice junction
(Sonnenburg et al. 2007).

Several methods have been developed over the
years for the prediction of splice sites and most of
them are based on Artificial Neural Network (ANN)
(Weber 2001; Sonnenburg et al. 2002; Rajapakse and
CaH, 2005) and Support Vector Machine (SVM) (Zien
et al. 2002; Degroeve et al. 2002; Sun et al. 2003;
Saeys et al. 2004; Huang et al. 2006; Baten et al.
2006; Sonnenburg et al. 2007; Chen et al. 2009). Some
of the approaches are also based on classification
trees (Burge and Karlin 1997; Pertea et al. 2001;
Patterson et al. 2002). In splice site prediction using
machine-learning approaches, sequence data are first
encoded into numeric form and are then used as input
to train, validate and test the model.

Besides SVM and ANN, Random Forest (RF)
(Breiman 2001) is another machine learning technique
that has been extensively used in the area of genomic
research (Bureau et al. 2005; Meng et al. 2009). It is
an extension of Breiman'’s earlier work on Classification
And Regression Trees (CART) (Breiman et al. 1984)
and bootstrap aggregating (bagging; Breiman, 1996).
RF has been widely applied to different benchmarks
studies and in many cases, outperforms other
classifiers like Linear discriminant analysis (LDA), K-
nearest-neighbor (KNN), SVM, Quadratic discriminant
analysis (QDA), ANN etc. (Wu et al. 2003; Lee et al.
2005; Hamby and Hirst 2008; Dehzangi et al. 2010;
Khalilia et al. 2011). However, its application in the
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area of splice site prediction is yet to be fully explored.
Further, in earlier studies, no comparative analysis
has been carried out between ANN and SVM for
prediction of splice sites. Therefore, it is required to
apply the RF for splice site prediction as well to perform
a comparative analysis among SVM, ANN and RF.

In the present study, a new encoding approach
has been devised to encode the splice site sequences
of rice genome. The encoded dataset was further used
as input for predicting the donor splice sites using
ANN, SVM and RF. In addition, a comparative analysis
was carried out to assess the performances of ANN,
SVM and RF in terms of Receiving Operating
Characteristics (ROC) curve and estimate of Area
Under ROC curve (AUC) (Fawcett 2006).

Materials and methods

Collection and processing of data

Exon and intron sequences of Oryza sativa were
collected from the FTP site of Rice Genome
Annotation Project (ftp:/ftp.plantbiology.msu.edu/pub/
data/ Eukaryotic_Projects/ o_sativa/ annotation_dbs/
pseudomolecules/version_7.0). The true splice sites
(TSS) having 100 nucleotides at exon end and 102
nucleotides at intron start (including the conserved di-
nucleotide GT at intron start) were extracted from the
collected exon and intron sequences thorough a perl
program. Further, the false splice sites (FSS) of length
202 were extracted from the exonic and intronic
sequences having GT at 101% and 102 "™ positions
respectively. Keeping in view the availability of
computational resources at hand, a sample dataset
with 10000 TSS and 10000 FSS were considered for
the analysis.

Selection of window size

Optimization of window size for different genomes is
crucial for the induction of accurate species-specific
splice site prediction model [Degroeve et al. 2002;
Meher et al. 2014a]. Here, the idea of modified
Bhattacharya distance (Comaniciu et al. 2003) was
explored to determine the initial window size. Besides
the initial window size, four more window sizes in the
vicinity of splice junction were considered to assess
about the impact of window size on the prediction
accuracy as well as to determine the optimum window
size.

Redundancy check

The redundancy check was performed for the

[Vol. 76, No. 2

considered five different window sizes and the
percentage of duplicate (overlapping) sequence within
and between TSS and FSS was observed. Finally,
the window size(s) having more than 50% overlapped
sequences were excluded as presence of large number
of overlapped sequences may lead prediction accuracy
biased towards the class having large number of
overlapped sequence. The remaining window sizes
were further considered to determine the optimum
window size on the basis of lower misclassification
error.

Associations among nucleotides

Associations among nucleotides were computed by
using the method proposed by Meher et al. (2014b)
and is describe as follows;

Consider a sequence dataset having N

sequences of equal length P and let Sk:
(Xiks Xo s Xpi )+ X €{AT,G,C}; Vi=

1,2,...,P be the k™ sequence. Then for the i"
position, the occurrence of base s can be described

by an indicator variable I i.e.,. l,;=1(X, =9)=

1 if soccurs .
Yi=L12,..,P;

0, otherwise se{AT,G,C};

k=1,2,...,N.Then, association between base s and
t at i and | position respectively is computed by

D1 (% =91 (% =1)

k=t Vi#j
N

ai,j(sit): =
\/Zl(xﬁs).gl(xjk:t)

Initially, window length of 30 bp was taken for
computing association matrices. Sixteen association
matrices, each of order P x P (where, the diagonal
elements are kept zero), were obtained corresponding
to 16 combinations of di-nucleotides and out of them
10 association matrices are enough to fully portrait
the association structure as the remaining 6 can be
obtained by taking the transpose of the others (Meher
et al. 2014b). The heat maps were then generated
separately for TSS and FSS and the color keys with
histogram are plotted (Fig. 1, only 5 combinations are
plotted) to visualize the variability in the association
pattern both in TSS and FSS motifs.
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Fig. 1. Color keys of the heat maps generated using
the association matrices of TSS and FSS. Out of
16 possible association matrices, 10 are enough
to portrait the associations. Here, color keys of
only five associations (AA, AT, AG,ACand TT)
are provided. It can be observed from histogram
that there is a higher degree of variability in the
association of TSS as compared to the FSS

Encoding of splice site motif

From Fig. 1 it is observed that the variability in the
association is more in TSS than FSS. Keeping in mind
the differences in variability in the association pattern
between TSS and FSS, a sequence encoding
approach is proposed here and the steps are as follows;

a. Use a subset of TSS and FSS for finding the
respective association matrices.

b.  Subtract the association matrices of FSS from
the corresponding association matrices of TSS.

c. Pass all the 10000 motifs of TSS and FSS
through difference matrices obtained in step-2
and encode the motifs into numeric form.

A flow diagram of the encoding procedure is
presented in the Fig. 2. In this encoding procedure, a
sequence of length was converted into a numeric vector
of length | x (I-1). To check the consistency of the
proposed encoding approach, five non-overlapping
subsets of slice site motifs were used for the encoding.
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Fig. 2. Flow diagram of encoding the training and test
sequence datasets. In each fold of the five-fold
cross validation, training sets of TSS and FSS
i.e., encoding subsets are used for computing
the respective association matrices. Then, the
differences in the association matrices are
computed. Finally, training and test sequence
datasets are passed through these difference
matrices to get the encoded sequence data
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Prediction using SVM, ANN and RF

The encoded sequence datasets were used as input
in the considered machine learning techniques for the
prediction of donor splice sites. Initially, the encoded
datasets were divided into five non-overlapping subsets
for adopting five-fold cross validation procedure,
separately for the TSS and FSS. In each fold, one set
of TSS and one set of FSS together were used as the
test set and the remaining sets were used together as
the training set. The training of the models was done
with optimized parameters setting.

A Comparison among SVM, ANN and RF was
made using ROC curves. Further, the statistical
comparison between two ROC curves was made using
AUC and its Standard Error (Bradley 1997). The SE of
AUC was computed as

e [0+ N 1)Q,-6%)+N T -1)Q,-6%)
N(TSS) ((FSS)
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0 2.9

where leﬁ ' Qz—m - N(TSS) \(FSS)

and
& are the number of positive instances (TSS), number
of negative instances (FSS) and estimate of AUC-
ROC respectively.

Optimization of parameters

For the optimization of parameters, a sample dataset
of 2000 encoded TSS and 2000 encoded FSS were
used. In RF, the number of variables to be chosen at
each node i.e., mtry was optimized. The optimum one
was identified out of the considered ten different values
of mtry i.e., (Vp)/2, Vp, 2*V/p, 3*/p, 4*V/p, 5*V/p,
6*vp, 7*Vp, p/2 and p (=1x(I-1)). In case of SVM, the
radial basis function was used as the kernel, where
the optimum value of gamma was obtained from
different values of gamma i.e., 0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09 and 0.1. Similarly, in ANN,
the optimum number of units in the hidden layer was
obtained from ten different units in the hidden layer
i.e., 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. In all the
cases, the optimum value of parameter was obtained
based on the lowest misclassification error averaged
over five-fold cross validation.

Implementation of SVM, ANN and RF

The “e1071” (Meyer et al. 2012), “RSNNS” (Bergmeir
et al. 2012) [28] and “randomForest” (Liaw and Wiener,
2002) packages of R software were used for
implementing SVM, ANN and RF respectively on the
encoded data sets. The SVM model was trained with
the radial basis function as kernel with optimum value
of gamma. In the ANN model, multilayer perceptron
was used with “Randomize_Weights” as initialization
function, “Std_Backpropagation” as learning function
and “Act_Logistic” as hidden activation function with
optimum number of units in the hidden layer. RF was
trained with optimum number of mtry and 10000 trees
(ntree) in the forest.

Results and discussion

Accuracy in the prediction of gene structure is highly
dependent on the accuracy of splice site prediction
(Baten et al. 2006). During last decade, several
methodologies have been developed for the prediction
of splice sites and among them machine learning
based methods are more successful in terms of
prediction accuracy (Wei et al. 2012). For prediction
using machine learning techniques, the sequence data
are first encoded into numeric form and are then used
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as input. Most of the encoding procedures are based
on the nucleotide dependency features surrounding
the splice junction. In this study, we proposed an
encoding procedure based on the association among
adjacent and non-adjacent nucleotides in splice site
motifs. The encoded dataset of donor splice sites were
used as input in ANN, SVM and RF classifiers for the
prediction purpose.

In splice site prediction, species specific window
size determination is important and thus the
Bhattacharya distance was used to have an idea about
the initial window size. Using the position wise aligned
sequence dataset of TSS and FSS motifs, Modified
Bhattacharya distance was computed and plotted (Fig.
3) for 20 positions in splice site motif (10 positions at
the exon end and 10 positions at the intron start
excluding GT at the beginning of intron). It is seen
from Fig. 3 that the three positions at the exon end
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Fig. 3. Modified Bhattacharya distances between the
positions of TSS and FSS. It can be seen that the
distances at seven positions in splice site motif
(3 at exon end and 4 at intron start, excluding
conserved two positions at the beginning of
intron) are higher than the other positions.
Hence, 9bp motif (including 2 bp GT at intron
start) is considered as the initial window size

and four positions at the intron start excluding GT have
the higher distances than other positions. Further, it
is observed that the distances at the intron side are
higher as compared to the exon side. Keeping these
distances in mind, the initial window size considered
was of 9 base pair (bp) having 3bp at the exon end
and 6bp at the intron start (including GT). In addition,
four more window sizes i.e., 15bp, 20bp, 25bp and
30bp were also considered by taking more positions
at the intron side because of the higher distance.

In the five different window sizes, redundancy
check was performed to analyze the percentage of
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overlapped (identical) sequences present within and
between TSS and FSS. The percentage of overlapping
sequences for the 9bp window size in TSS as well
between TSS and FSS is above 60% where as it is
around 50% within FSS (Fig. 4). However, for the other
window sizes viz., 15, 20, 25 and 30bp the percentage
of identical sequences is less than 30. Hence, the
9bp window size was excluded and other four window
sizes were considered for further prediction.
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Fig. 4. Percentage of identical sequences within and
between TSS & FSS. More than 60% of identical
sequences are present within TSS and between
TSS & FSSfor 9bp window size. The percentage
of identical sequences in other window sizes is
less than 30

For each window size, misclassification error was
obtained for all the three machine-learning approaches
with different parameter combinations as mentioned
in materials and methods and plotted in Fig. 5. It is
observed that the misclassification error is lowest for
the window size 20bp in all the three machine-learning
techniques and considered as the optimum window
size for final prediction. This implies that prediction
accuracy is not necessary to increase with increase
in the length of window size. A similar result has also
been obtained in earlier study in human splice site
prediction (Huang et al. 2006).
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Fig.5. Misclassification errors in RF, SVM and ANN
for four different window sizes under different
values of parameters. It can be seen that in all
the three machine learning approaches,
misclassification error (averaged over 5-fold)
is lowest for 20bp window size. Here,
misclassification error is the average of false
positive (FP) and false negative (FN). The
misclassification error was computed across
different values parameter setting in RF, SVM
and ANN

Default parameter setting in machine learning
techniques does not always provide the best possible
result and sometimes fine tuning of parameters are
required to get maximum accuracy. Here, three
parameters i.e., gamma for SVM, number of hidden
units for ANN and number of variables to be chosen
at each node in case of RF were optimized out of 10
values of parameters under each method. The optimum
one was determined based on lowest misclassification
error averaged over five-fold cross validation. For the
window size of 20bp, the misclassification error was
found minimum at mtry = 40, gamma = 0.05 and size
of hidden layer = 5 for RF, SVM and ANN respectively
(Fig. 6) and these parametric values were considered
as optimum under respective method.

The evolvement of machine learning techniques
has been a boon for the scientific community working
in the area of prediction or classification. SVM and
ANN have been most commonly used in this area.
However, the RF technique has been proved better
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Fig.6. Misclassification errors in RF, SVM and ANN
for 20 bp window size under 10 different values
of parameters in each tecniques. It is observed
that the misclassification error is lowest for RF
at mtry=40; for SVM at gamma=0.05 and for ANN
at number of hidden unit=5. These parameters
were considered as optimum parameters and
used in the final prediction model

over SVM and ANN in several benchmark studies
since its induction. Since these techniques are more
or less data dependent, choosing the better one is
often a good practice. However, in the area of splice
site detection they have been used independently. For
this reason, a comparative analysis was carried out
among these techniques using ROC and estimate of
AUC. Using the optimum window size and parameter
setting, the final prediction was made with ANN, SVM
and RF using dataset that consist of 10000 encoded
TSS and 10000 FSS motifs. The prediction was made
through five-fold cross validation technique. The ROC
curves are plotted for five differently encoded sets
(Fig. 7) and AUC values with their standard error are
also computed (Table 1). It can be seen from Table 1
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Fig. 7. ROC curves of RF, SVM and ANN under five
different encoding subsets. The ROC curves are
plotted on the basis of test dataset averaged
over 5-fold cross validation with the optimum
parameter setting and window size of 20 bp
length. It can be seen that ROC curve of RF is
better than SVM and ANN in all the five different
encoding subsets

that the AUC for RF is highest followed by SVM and
ANN. Using a single dataset seems to be not sufficient
in providing information regarding the success of
encoding approach as far as consistency is concerned.
So, itis required to use more number of non-overlapping

Table 1. AUCSs and their SE for ANN, SVM and RF under five different encoding subsets. It can be seen that the estimate
of AUCs under RF is higher than that of ANN and SVM under all the encoding subsets

MLAs Subset-1 Subset-2 Subset-3 Subset-4 Subset-5
ANN 0.929 0.928 0.927 0.930 0.929
(x0.001898) (x0.00191) (x0.001921) (x0.00188) (x0.00190)
SVM 0.939 0.941 0.940 0.939 0.938
(+0.001762) (+0.00171) (+0.00174) (+0.00175) (+0.00177)
RF 0.947 0.946 0.947 0.946 0.946
(+0.001637) (+0.00164) (+0.00164) (+0.00164) (+0.00165)
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subsets for the encoding to check the consistency of
the encoding approach as far as prediction accuracy
is concerned. Therefore, five non-overlapping subsets
were used for the encoding approach and observed
that in each case the performance (AUC) of the
machine learning techniques are consistent in all the
five differently encoded dataset. Also, it is seen that
RF is consistently better than ANN and SVM in all the
five encoded dataset. Thus, it is inferred that the RF
can be used efficiently in place of SVM and ANN for
the prediction of donor splice sites in rice.

A comparative analysis among SVM, ANN and
RF revealed that the RF was better than that of SVM
and ANN in terms of estimate of AUC measured over
five-fold cross validation technique. Hence, it is
concluded that RF can be used as afeasible alternative
to ANN and SVM for the prediction of donor splice
sites in rice with high prediction accuracy. Further,
the proposed encoding approach can also be used to
encode the sequence data of other functional elements
like splicing enhancer, splicing repressor, glycosylation
site etc.

Acknowledgements

The authors sincerely acknowledge the Indian
Agricultural Statistics Research Institute funded
project having project code as AGENIASRISIL
201301300014 and the SCGL Facility developed under
ICAR-NAIP grant NAIP/Comp-4/C4/C-30033/2008-09.

References

Baten A., Chang B., Halgamuge S. and Li J. 2006. Splice
site identification using probabilistic parameters and
SVM classification. BMC Bioinformatics, 7(Suppl 5):
S15.

Bergmeir C. and Benytez J. M. 2012. Neural Networks in
R Using the Stuttgart Neural Network Simulator. J.
Stat. Soft., 46(7): 1-26.

Bradley A. P. 1997. The use of the area under the ROC
curve in the evaluation of machine learning
algorithms. Pattern Recogn., 30: 1145-59.

Breiman L. 1996. Bagging predictors. Mach Learn., 24(2):
123-140.

Breiman L. 2001. Random Forests. Mach Learn., 45: 5-
32.

Breiman L., Freidman J. H., Olshen R. A. and Stone C. J.
1984. Classification and Regression Trees.
Chapman and Hall, New York.

Bureau A., Dupuis J., Falls K., Lunetta K. L., Hayward B.,
Keith T. P. and Van Eerdewegh P. 2005. Identifying
snps predictive of phenotype using random forests.

Machine learning techniques for splice site identification

179

Genet. Epidemiol., 28(2): 171-182.

Burge C. and Karlin S. 1997. Prediction of complete gene
structure in human genomic DNA. J. Comput. Biol.,
268(1): 78-94.

Chen Y., Liu F., Vanscheonwinkel B. and Manderick B.
2009. Splice site prediction using support vector
machines with context-sensitive kernel functions. J
Univers Comput Sci., 15(13): 2528-2546.

Comaniciu D., Ramesh V. and Meer P. 2003. Kernel-
based object tracking. IEEE Trans Pattern Anal Mach
Intell., 25(5): 564-577.

Degroeve S., De Baets B., Van de Peer Y. and Rouz P.
2002. Feature subset selection for splice site
prediction. Bioinformatics, 18: S75-S83.

Dehzangi A., Phon-Amnuaisuk A. and Dehzangi O. 2010
Using random forest for protein fold prediction
problem: An empirical study.J. Inf. Sci. Eng., 26(6):
1941-1956.

Fawcett T. 2006. An introduction to ROC analysis. Pattern
Recogn. Lett., 27: 861-874.

Hamby S. E. and Hirst J. D. 2008. Prediction of glycosylation
sites using random forests. BMC Bioinformatics, 9(1):
500.

Huang J., Li T., Chen K. and Wu J. 2006. An approach of
encoding for prediction of splice sites using SVM.
Biochemie, 88: 923-929.

Khalilia M., Chakraborty S. and Popescu M. 2011.
Predicting disease risk from highly imbalanced data
using random forest. BMC Med. Inform. Decis. Mak.,
11: 51.

Lee J., Lee J., Park M. and Song S. 2005. An extensive
comparison of recent classification tools applied to
microarray data. Comput. Stat. Data An., 48: 869-
885.

Liaw A. and Wiener M. 2002. Prediction and regression
by random Forest. Rnews, 2: 18-22.

Meher P. K., Sahu T. K., Rao A. R. and Wahi S. D. 2014a.
Determination of window size and identification of
suitable method for prediction of donor splice sites
in rice (Oryza sativa) genome. J. Plant Biochem.
Biotechnol., DOI 10.1007/s13562-014-0286-2.

Meher P. K., Sahu T. K., Rao A. R. and Wahi S. D. 2014b.
A statistical approach for 5’ splice site prediction
using short sequence motif and without encoding
sequence data. BMC Bioinformatics, 15: 362.

Meng Y.,YuY., Cupples L., Farrer L. and Lunetta K. 2009.
Performance of random forest when snps are in
linkage disequilibrium. BMC Bioinformatics, 10(1):
78.

Meyer D., Dimitriadou E., Hornik K., Weingessel A., Leisch
F., Chang C. C. and Lin C. C. 2012. e1071: Misc
functions of the Department of Statistics (e1071), TU
Wien, R package version 1.6-1.



180 Prabina Kumar Meher et al.

Patterson D. J., Yasuhara K. and Ruzzo W. L. 2002. Pre-
mMRNA secondary structure prediction aids splice sites
prediction. Pac. Symp. Biocomput., 223-234.

Pertea M., Lin X. and Salzberg S. L. 2001. GeneSplicer: a
new computational method for splice site prediction.
Nucleic Acids Res., 29(5): 1185-1190.

Rajapakse J. and CaH L.S. 2005. Markov encoding for
detecting signals in genomic sequences. IEEE/ACM
Trans. Comput. Biol. Bioinform., 2(2): 131-142.

Saeys Y., Degroeve S., Aeyels D., Rouzé P. and Van de
Peer Y. 2004. Feature selection for splice site
prediction: A new method using EDA-based feature
ranking. BMC Bioinformatics, 5: 64.

Sonnenburg S., Ratsch, G., Jagota, A. and Muller K. R.
2002. New methods for splice site recognition.
Proceedings of the international conference on
artificial neural networks, 2415: 329-336.

Sonnenburg S., Schweikert G., Philips P., Behr J. and
Ratsch G. 2007. Accurate splice site prediction using
support vector machines. BMC Bioinformatics, 8
(Suppl 10): S7.

[Vol. 76, No. 2

SunY.F., Fan X. D.and Li Y. D. 2003. Identifying splicing
sites in eukaryotic RNA: support vector machine
approach. Comput. Biol. Med., 33: 17-29.

Weber R. 2001. DNA splice sites prediction with kernels
and voting. Proceedings of international conference
on mathematical and engineering techniques in
medicine and biological science, Nevada.

Wei D., Zhang H., Jiang Q. and Wei Y. 2012. A New
Classification Method for Human Gene Splice Site
Prediction. Proceedings of the first international
conference on health and science, Beijing, China:
121-130.

Wu B., Abbott T., Fishman D., McMurray W., Mor G., Stone
K., Ward D., Williams K. and Zhao H. 2003.
Comparison of statistical methods for classification
of ovarian cancer using mass spectrometry data.
Bioinformatics, 19(13): 1636-1643.

Zien A., Ratsch G., Mika S., Scholkopf B., Lengauer T. and
Muller K. 2000. Engineering support vector machine
kernels that recognize translation initiation sites.
Bioinformatics, 16(9): 799-807.



