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Abstract

Genetic association tests provide clues on chromosomal

locations of putative genes underlying complex traits, both

qualitative (such as disease status) and quantitative (such

as measurable precursors of clinical outcomes). One can

adopt either a population-based or a family-based study

design to generate genotype and phenotype data necessary

to carry out the tests of association. In this article, we

provide an overview of the two contrasting study designs,

the statistical issues pertaining to each of these study

designs as well as their relative advantages and

disadvantages. We also outline the current statistical

challenges in interpreting association findings in the

presence of population stratification and in carrying out

appropriate comparisons of the powers of the association

tests based on the two study designs.
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Introduction

Association mapping of susceptible genes underlying

complex disorders is an active area of current research

in genetic epidemiology. Compared to Mendelian

disorders, there has been limited success in identifying

genes involved in complex disorders as these traits

are believed to be controlled by multiple loci, some

with minor gene effects, and genetic variation at any

one locus does not completely determine the trait.

Moreover, epistatic as well as gene-environment

interactions often modify the risk of developing the

disease. While linkage analyses (Ott 1999) have been

traditionally successful in identifying rare variants with

large genetic effect sizes characterizing Mendelian

disorders, they have been relatively unsuccessful in

detecting common variants with moderate effect sizes

characterizing complex disorders. There is evidence

that association studies, which measure the extent of

linkage disequilibrium (LD) between alleles of two loci

(Weir 1996), are statistically more powerful than linkage

studies in gene mapping of complex traits (Risch and

Merikangas 1996). This is because linkage

disequilibrium (LD) exists over smaller distances on

the genome compared to linkage. Thus, a positive

association finding provides a more precise location

of  a locus  modulating the  underlying   trait.

The aim of genetic association studies is to relate

genetic information to a clinical outcome or a

phenotype, which could be either qualitative or

quantitative in nature. Qualitative traits are

predominantly, though not exclusively, binary in nature

and denote the affection status with respect to a clinical

outcome. In contrast, quantitative traits are measurable

physiological or bio-chemical quantities such as

height, blood pressure, serum cholesterol

concentration and body mass index (BMI) that are

often, though not necessarily, major precursors of

clinical outcomes. For example, total serum cholesterol

and triglyceride levels are examples of quantitative

traits that characterize cardiovascular disorder, a

binary trait. These quantitative precursors carry more

information on inter-individual trait variability compared

to the binary end-point traits governed by them and

hence, it has been argued that analyzing these

quantitative traits may statistically be a more prudent

strategy to detect association.

There are two popular classes of study designs

for carrying out genetic association analyses: (i)

population based and (ii) family based. While the first

design involves collection of genotypic and phenotypic
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data on a unrelated set of individuals selected

randomly from a population, the latter deals with data

on multiple individuals within families (Foulkes 2009).

Thus, there are fundamental differences in the

statistical issues pertaining to tests for association

based on the two designs. Unlike population based

designs which result in independent observations,

family based designs induce observations that have

higher within family correlations compared to between

family correlations and hence, statistical tests based

on identically and independently distributed

observations need to be modified for analyzing family

data.  Moreover, family-based genetic data provides

the flexibility to detect recombinations via haplotype

construction but such detection is not possible based

on unrelated individuals as in population-based

designs. Thus, statistical evidence of association

based on family-based designs are valid only in the

presence of linkage but that based on population-based

designs are, in general, independent of linkage and

hence, may turn out to be genetically spurious.

Population-based genetic analyses

Binary traits

Population-based designs include case-control

studies, cross-sectional studies and prospective or

retrospective cohort studies. The individuals included

in the study should be representative of all individuals

in the a priori de- fined specific population. The most

popular among the above designs based on qualitative

data is the case-control test due to the ease of data

collection and statistical methodology of testing for

association. A comprehensive overview of the case-

control study design is provided in Lewis and Knight

[2012].  A random sample of cases (individuals

affected with the disease of interest) is collected along

with an independent random set of control indi-viduals

(in general, those unaffected with respect to the

disease) and the test for association is based on a

comparison of the allele frequencies at a SNP between

these two groups. It is important to ascertain the cases

based on appropriate clinical criteria in order to ensure

phenotypic homogeneity. While the usual mechanism

of selecting controls is through screening based on

absence of the disease condition, an alternative

scheme is to select a random sample of individuals

from the populations without any clinical

ascertainment.  It is intuitively clear that tests for

association based on both types of controls yield

comparable powers for rare diseases. However, for

common diseases, the power of a test based on

controls ascertained for absence of disease condition

may be substantially higher than that based on

controls without clinical ascertainment.

Statistical tests for association based on the

case-control design can be carried out at two levels:

genotypic and allelic. The genotype-level test is

essentially a test of homogeneity of distributions of

the different genotypes among cases and controls at

a locus. For a single nucleotide polymorphism (SNP),

there are three genotypes and hence, the test statistic

is asymptotically distributed as chi-squares with two

degrees of freedom under the null hypothesis of no

genotype association. However, the test does not use

any genetic information in the sense that the test

statistic is invariant under the order of the genotypes

in the 2 x 3 contingency table and hence, does not

identify risk genotypes. On the other hand, the allele-

level test is based on counts of the two alleles among

cases and controls that can be obtained by

decomposing the 2 x 3 genotype table to a 2 x 2 table.

The test statistic is asymptotically distributed as chi-

squares with one degree of freedom under the null

hypothesis of no allelic association. This test is

equivalent to the genotype level test when the true

model of association is multiplicative (or log additive),

that is, the genotype relative risk of the major

homozygous genotype compared to the heterozygous

genotype is equal to that of the heterozygous genotype

compared to the minor homozygous genotype (Sasieni

1997). The Cochran-Armitage trend test (CATT) that

explores for a trend in the risks corresponding to the

ordered genotypes in the 2 × 3 table (Cochran 1954;

Armitage 1955) is asymptotically equivalent to the

allele-level test but is less affected by departures from

Hardy-Weinberg Equilibrium (Sasieni 1997). While the

allele level test is used in candidate gene approaches,

CATT has gained popularity [O’Donovan et al. 2008]

for genome-wide association studies (GWAS). If one

is interested in more specific genetic hypotheses such

as the mode of inheritance (dominant or recessive) at

a SNP, one can compare the combined risk conferred

by two of the genotypes with that conferred by the

third. However, it is important to note that the test

statistics corresponding to the different analytic

methods described above are highly correlated and

hence, one should apply a multiple testing correction

when several of the analyses are simultaneously

carried out on the same set of data (Lewis and Knight

2012).
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Quantitative traits

In order to carry out association analyses of continuous

or other quantitative traits, data are collected on

genotypes and phenotypes data for a set of individuals

selected randomly from the population without any

ascertainment. The tests for association are based

on detecting differences in phenotype characteristics

across the different genotypes at a SNP. The popular

statistical tools for this purpose are analysis of variance

(ANOVA) and linear regression. ANOVA is analogous

to the Pearson two degree of freedom genotype-level

test in the case-control framework as it compares the

null hypothesis of no association (equal means across

the three genotypes) with a general alternative, while

the linear regression approach assumes an additive

allelic effect resulting in a reduction in the degrees of

freedom from two to one (Balding 2006). Both the tests

are valid under the assumption that the distribution of

the underlying trait conditioned on each genotype is

normal with the same variance. For violations in the

above assumptions, approximate normality can be

induced using logarithmic transformations of the

observed trait values.

Many quantitative traits (e.g., symptom counts

in a psychiatric diagnosis) do not follow a normal

distribution, even after certain transformations (Li et

al. 2013). Analyses based on ANOVA or a standard

linear regression model may lead to misleading

inferences. An alternative approach is to use

nonparametric tests that depend on ranks and hence

are not sensitive to violations in underlying

distributional assumptions. The most popular among

them is the Kruskal Wallis test (Kruskal and Wallis

1952) that compares the distribution of the quantitative

trait across different genotype groups. In fact, it is

analogous to standard ANOVA with the actual

quantitative values replaced by their ranks. On the

other hand, the Kruskal-Wallis test is less powerful

than ANOVA when the underlying assumptions such

as normality and homoscedasticity across genotype

groups are indeed valid. Moreover, if prior knowledge

is available on the ordering of the median trait values

across the three genotype groups, the Jonckheere-

Terpstra test (Jonckheere 1954; Terpstra 1952) is

more optimal (though less robust) compared to the

Kruskal Wallis test.

It is possible to analyze quantitative traits in the

case-control framework by dichotomizing the sample

based on some threshold. However, this leads to

reduction in information on inter-individual variability

resulting in sub- stantial loss in power of the

association tests. However, Slatkin [1999] showed

that the power of these tests may be increased by

ascertaining individuals only from the extremes of the

trait distribution. A detailed discussion on analyses

based on transforming quantitative traits into binary

traits is avail- able in Lewis and Knight (2012).

The Caveat: Population stratification

One of the major limitations of population-based genetic

case-control studies as well as quantitative trait

association analyses is the problem of population

stratification. It is well known that allele frequencies

vary widely within and between populations,

irrespective of disease status (Cavalli-Sforza et al.

1994; Perez-Lezaun et al. 1997). This disparity across

different populations can be attributed to unique

genetic and social histories in terms of ancestral

patterns of geographical migration, mating practices,

reproductive expansions and bottlenecks as well as

stochastic variation between individuals (Slatkin 1991).

While none of the above factors is necessarily

associated with any particular disease, tests for

association based on a sample comprising genetically

or phenotypically heterogeneous subpopulations are

susceptible to inflated rates of false positives and

hence, result in spurious evidence of association. The

classical problem of population stratification is

characterized by genetic differences between cases

and controls attributable to diversity in background

populations unrelated to the trait under study. Studies

have shown the presence of allelic heterogeneity within

many genes related to clinical traits (Goddard et al.

2000; Stephens et al. 2001). Hence, population

substructure is a serious confounder in genetic

association studies. A comprehensive discussion on

population stratification has been provided in Cardon

and Palmer [2003]. It is important to note that in

addition to genetic heterogeneity, there needs to be

differences in the disease prevalance across

subpopulations and the presence of any one of these

phenomenon is not sufficient to result in population

stratification (Wacholder et al. 2000). The adverse

effect of population stratification is also relevant in

the con- text of quantitative traits. (Haldar and Ghosh

2012) theoretically studied the marginal as well as joint

effects of genetic heterogeneity (differences in marker

allele frequencies) and phenotypic heterogeneity

(differences in standardized phenotypic means) across

subpopulations on the false positive rates of the three

popular population-based tests of association for
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quantitative traits : ANOVA, linear regression with an

additive allelic effect and the Kruskal Wallis test.

Population stratification is probably the major reason

behind the failure to replicate many genetic association

results (Tabor et al. 2002; Weiss and Terwilliger 2000;

Terwilliger and Goring 2000). This problem is of

specific relevance for studies on Indian populations

due to increasing evidence of genetic heterogeneity

among different ethnic populations in India (Basu et

al. 2003; Thangaraj et al. 2005; Brahmachari et al.

2008).

Family-based genetic analyses

Family-based designs may vary from simple cases of

parent-offspring trios, concordant/discordant sib-pairs

to large multigenerational pedigrees. While most

family-based tests for association are based on the

transmission bias of an allele within informative

families (families with at least one heterozygous parent)

(Ewens et al. 2008), a few methods such as Abecasis’s

‘total’ association test (Abecasis et al. 2000) have

been developed to analyze all available data.

Trios comprising two parents and one offspring

are the most popular family- based design. The

classical Transmission Disequilibrium Test, more com-

monly known as TDT [Spielman et al., 1993] is the

standard approach to test for linkage disequilibrium in

the presence of linkage when at least one of the parents

is heterozygous at the SNP and the offspring is affected

with the disease of interest. The major difference

between TDT and the case-control association test

lies in the estimation of allele counts under the null

hypothesis of no association. While the case-control

design involves the computation of unconditional

expectation of allele counts assuming the background

frequencies to be same in cases and controls, TDT is

based on the conditional expectation of allele counts

among affected offspring given parental genotypes

under Mendelian segregation [Laird and Lange, 2008].

The classical TDT (Spielman et al. 1993) based

on the trio design is a valid test for both linkage and

association. However, it is a valid test only for linkage

in the presence of multiple sibs in a family. In the

absence of allelic association between a marker and

a disease locus, a parent  heterozygous at the marker

locus has equal chance of transmitting any one of the

two alleles to an affected offspring. On the other hand,

a marker allele that is in positive linkage disequilibrium

with the risk-predisposing allele at the disease locus

is likely to be preferentially transmitted by a

heterozygous parent to the affected offspring. The test

is equivalent to a McNemar’s test when all parents

are considered and a binomial equality of proportion

test when only heterozygous parents are considered.

Under the null hypothesis of no linkage or no

association, the test statistic is asymptotically

distributed as chi-squares with 1 degree of freedom.

Since TDT requires genotype information on parents,

the trio design is often infeasible for diseases with

older age at onset. It can be analytically shown that

even if it is possible to decipher the identity of the

allele transmitted from a heterozygous parent when

the data on the other parent is missing, inclusion of

such families can increase the false positive rate of

TDT [Curtis and Sham, 1995]. An alternative to TDT

is Sib TDT (Spielman and Ewens 1998) that uses

genotype data on sibships, comprising both affected

and unaffected siblings, instead of parents. The test

statistic compares the counts of a specific allele

among affected and unaffected sibs. Since TDT

explicitly uses information on parental trans- missions

while Sib TDT attempts to decipher the same based

on genotypes of sibs, TDT is expected to be more

powerful compared to Sib TDT, espe- cially for smaller

sibships. Whittaker and Lewis [1999] have shown that

the number of families required for Sib TDT based on

one affected and two un- affected sibs per family is

one and a half times the number of trios required for

TDT to yield equivalent powers to detect association.

However, the test statistics corresponding to TDT and

Sib TDT may be combined to perform a single test,

thus allowing the flexibility of incorporating both trios

as well as sibships in the analyses.

Weinberg et al. (1998) proposed a log-linear

framework for qualitative traits to model the frequencies

of the fifteen possible trio types comprising the

different parental mating types and the feasible

offspring genotypes. The case/pseudocontrol approach

based on case-parent trios proposed by Cordell and

Clayton (2002) is similar in principle, except that it

models off-spring genotypes conditioned both on

parental genotypes and ascertainment through the

affected offspring. A modification of the above model

has been presented in Cordell et al. (2004) that can be

viewed as a generalization of the classical TDT and

other methods (Schaid and Sommer 1993;  Schaid

1996).

The model provides the flexibility of considering

more complex models involving multiple linked or

unlinked predisposing loci with possible epistatic or



280 Saurabh Ghosh  and Tanushree Haldar [Vol. 79, No. (1) Suppl.

gene-environment interactions.

There have been various extensions of the

classical TDT for binary traits to analyze quantitative

trait data. The simplest approach is to transform the

quantitative trait values to a dichotomous variable

based on some threshold. For quantitative precursors

of diseases, these thresholds are often determined

by clinical manifestations. The transformed trait can

then be analyzed using traditional methods like TDT

(Allison 1997). However, an arbitrary choice of the

threshold leads to substantial loss of information on

trait variability. Allison (1997) modeled the quantitative

trait of an offspring as a function of his/her genotype

conditioned on the parental mating type and used

standard ANOVA to test for association under the

assumption that the trait values are normally distributed.

On similar lines, Abecasis et al. (2000) proposed QTDT

that models the trait values based on linear effects of

the offspring genotype and the average of the parental

genotypes. However, unlike the classical TDT, these

models do not assume independence between parental

transmissions. Moreover, since these approaches

model a quantitative trait as a function of genotypes,

they are essentially prospective analyses (Wheeler

and Cordell 2007). On the other hand, modeling

offspring genotypes in terms of quantitative trait values

and possibly parental genotypes result in retro-

spective analyses (Wheeler and Cordell 2007) as is

the case in the classical TDT (Spielman et al. 1993).

Among the retrospective approaches, Waldman

et al. (1999) developed a logistic regression approach

that models the log odds of transmission of a specific

allele at a locus by a heterozygous parent conditioned

on the quantitative trait value of the offspring. The

model assumes the transmissions from two

heterozygous parents to their offspring to be

independent. Using a polytomous logistic regression

extension of the log-linear likelihood approach for

qualitative traits, Kistner and Weinberg (2004, 2005)

modeled the log odds of an offspring having two copies

of a specific allele versus one copy and that of having

no copy of the allele versus one copy as functions of

the trait value of the offspring conditioned on the

parental genotypes. Wheeler and Cordell (2007)

extended the case/psuedocontrol approach for

qualitative traits. (Cordell and Clayton 2002) to deal

with quantitative traits. (Haldar and Ghosh 2015)

proposed a computationally simple logistic regression

model TBAT to test for association for quantitative

traits based on the traditional trio design which can be

viewed as a direct extension of the classical TDT

(Spielman et al. 1993) to quantitative traits. The method

can also be easily modified to incorporate a

multivariate phenotype vector possibly comprising

both quantitative as well as qualitative traits.

In addition to the parametric and semi-parametric

methods mentioned above, nonparametric extensions

of the TDT have been suggested for quantitative traits.

These methods do not make any assumptions about

the distribution of the quantitative trait and are also

applicable in situations with multiple offspring per

nuclear family. The general approach involves

estimating the covariance between the quantitative

trait and the indicator for parental transmission

(Rabinowitz 1997; Monks and Kaplan 2000). Similarly,

another class of family-based association tests,

referred to as FBAT, is also based on the covariance

between a function of the genotype and a function of

the trait (Laird et al. 2000).

Discussion

Given the susceptibility of population-based case-

control studies to yield false positive findings due to

population stratification, it has been of interest to

develop family-based study designs, which despite

being more demanding with respect to genotype

requirements, circumvents the above problem.

However, family-based designs are not cost-effective,

often not feasible (for example, in pharmacogenetic

studies) and grossly underpowered to detect genes

with modest effects (Risch and Merikangas 1996).

Thus, it has been argued that correction for population

stratification in case-control studies using statistical

adjustments may be more optimal than modifying the

study design to a family-based framework. There have

recently been promising developments in statistical

methodologies in this regard (Pritchard et al. 2000;

Devlin et al. 2001; Price et al. 2006; Majumdar et al.

2013), though it remains a statistical challenge to

determine the optimal number of genome- wide

markers required to evaluate the level of stratification

and the extent to which the statistical corrections are

able to reduce the inflated rate of false positives.

However, there is increasing belief that population

stratification probably does not have that adverse an

effect as originally postulated, except when a

replication study is carried out in an ethnically diverse

population (Cardon and Bell 2001; Morton and Collins

1998).

The major analytical challenge in evaluating the
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relative performances of the population-based and

family-based study designs lies in the fact that a direct

and straight forward power comparison between allele-

level tests of association based on the case-control

design in the absence of population stratification and

the classical TDT (Spielman et al. 1993) based on the

trio design is not possible in the strict statistical sense

because the study designs are different with respect

to data requirements. A possible analytical frame- work

to address this issue is to determine the number of

cases (or controls) in a case-control design with equal

number of cases and controls as well as the number

of transmissions from heterozygous parents to

affected offspring (along with the total number of

families to be sampled to obtain the requisite number

of transmissions) in a trio design that yield a pre-

assigned power. We would also like to emphasize that

while population stratification has an adverse effect

on the false positive rates of only population-based

association tests and not family-based tests of

transmission disequilibrium, it can adversely affect

the powers of association tests based on both types

of data. Thus, one needs to be cautious that while

one can evaluate both the marginal as well as the

joint effects of genetic and phenotypic heterogeneities

on the powers of family-based tests, one can ideally

study only the marginal effect of either phenotypic or

genetic heterogeneity on the powers of population-

based tests so as to ensure controlled false positive

rates.
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