
Introduction 
Rice (Oryza sativa L.), the principal cereal crop, requires 
more nitrogen (N) than any other crop of the world. As 
a plant nutrient element, availability of N is naturally 
limited in the soil due to its high mobility and volatility. 
Therefore, intervention through fertilization is essential in 
agriculture to maintain the soil N status. Although under-
use of N can jeopardize crop production, excess use can 
end up in environmental degradation. Owing to several 
factors, exogenous and endogenous, plants are unable to 
utilize applied N efficiently. The exogenous factors include 
soil denitrification and rapid N loss through leaching, 
volatilization, and run-off. The average level of N use 
efficiency among the field crops is about 33% (Abrol et al. 
1999), with crop utilization ranging between 30 - 40 % of the 
applied N (Raun and Johnson 1999). A sizeable portion of 
the unutilized N is lost into the environment and becomes 
unavailable to the plants (Abrol 1 et al. 2007). A sustainable 
solution for this impasse is to develop nitrogen-efficient 
varieties that can give optimum or high yield at reduced N 
input. The plant use of applied N in agriculture is measured in 
terms of the parameter, overall N use efficiency (NUE) which 
is the ratio of grain yield to the applied N (Pathak et al. 2008). 
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NUE has two components, N uptake efficiency (NUpE) and N 
utilization efficiency (NUtE), the product of which gives NUE. 

Improving NUE is possible through breeding because 
the trait is genetically regulated, but the progress is slow 
due to the low heritability of the trait and its complex 
regulatory nature (Gallais and Hirel 2004). Quantitative 
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genetic variation in responses to low N has already been 
reported in rice and several QTLs have been identified. These 
QTLs are predominantly minor and numerous (Vinod and 
Heuer 2012) and are associated with several traits related 
to N nutrition and efficiency. Since many of the QTLs fall 
specific to the population from which they are mapped, 
the utility of such QTLs is limited in breeding. Therefore, 
it is essential to identify QTLs that are consistent across 
different backgrounds. Especially for complicated traits 
like N response, where there is a large number of reported 
QTLs but with low effects, identification of meta-QTLs 
(mQTLs) would be a great boon in utilizing them for crop 
improvement programs (Goffinet and Gerber 2000). A 
Meta-analysis is a computational procedure for identifying 
consensus QTLs that are located at the same locus with 
statistical confidence. The procedure involves comparison 
and identification of consensus QTLs using model-based 
strategies. Although several N related QTLs are reported, 
a meta-analysis of QTLs has not been done so far. Once 
identified mQTLs can be utilized for marker-assisted 
improvement of target varieties. The purpose of this study 
is to identify mQTLs for N use and related traits in rice from 
the reports of the last two decades and to investigate their 
distribution in Indian rice germplasm.

Materials and methods

Plant materials
An assembly of 65 rice varieties, recommended for 
cultivation at different parts of India was collected from 
the Division of Genetics, ICAR-Indian Agricultural Research 
Initiate at New Delhi. The genotypes consisted of cultivars, 
landraces, Basmati lines out of which some are known 
identified as N efficient verities (Supplementary Table S1). 
The genotypes were field grown and the genomic DNA was 
extracted using standard protocols (Murray and Thomson 
1980).

Meta-analysis of QTLs
Initially, the published information on QTLs related to NUE 
in rice was surveyed for the period between 2001 to 2021. 
Data were collected on the reported QTLs and the linkage 
maps from which the QTLs are mapped in each study. Data 
included N use parameters and agronomic traits related to 
N uptake and assimilation. The meta-analysis was performed 
as per the algorithms built into the software, BioMercator 
v.4.2.3 (Sosnowski et al. 2012). BioMercator is a suite of 
Java-based programs integrated into a single package, 
that performs analyses in three steps, (a) construction of a 
consensus map, (b) QTL projection and (c) Meta-analysis. 

QTL data compilation
The collected data were formatted as text files as prescribed 
in the software manual. For each study two sets of files were 
generated, a map file and a QTL file. The input data for the 

map file required details of the mapping population, size of 
the mapping population, marker type, number of markers 
used, chromosome label, marker label and map position. 
Supplementary information such as organism name, 
species, cross-type, parents used, mapping function, map 
name, map expansion, map quality, locus location were 
also incorporated in the map data. In the QTL file, details on 
traits used for QTL identification, QTL names, linkage group, 
LOD values, R2 values, and flanking markers were included. 
QTL data had additional information such as experimental 
location, year and trait ID. The data were first compiled in a 
Microsoft Excel worksheet and the QTL data and the map 
data were individually saved in tab-delimited text files 
before loading into the software.

Development of a consensus map and QTL projection
The compiled data were input into the software, in the order 
map data first followed by QTL data. Then the final consensus 
map was generated through a one-step procedure using 
weighted least squares by accounting for the statistical 
properties of the estimated genetic distances. The 
consensus map is separately named and used subsequently 
for QTL projection. This process involved superimposition 
of the QTLs on the consensus map using an algorithm that 
used a dynamic procedure to identify an optimal context to 
place the QTL on the map. The QTL placement depended 
on the pair of common markers that bracketed the QTL in 
the input maps, provided the interval of the markers and 
their positions were in correspondence between the maps. 

Model-based detection of mQTLs
A mQTL analyses was performed using two approaches. 
The first one used a QTL pooling algorithm developed by 
Goffinet and Gerber (2000) in which five models were built to 
test whether the QTLs detected from different experiments 
were congruent. By assuming a Gaussian (normal) 
distribution, the QTL models were analyzed for best fit using 
maximum likelihood estimates. Akaike information criterion 
(AIC) from the model was compared for the minimum value 
and the model with the lowest AIC value was taken as the 
best fit model. The analysis was based on the variance at 
the QTL position originating from different independent 
experiments estimated through confidence intervals (CI). 

The second approach (Veyrieras et al. 2007) used QTL a 
clustering procedure based on the Gaussian mixed model 
and the parameter estimates were obtained using the 
expectation-maximization (EM) algorithm, which used a 
basic assumption that all the QTL positions followed an 
asymptotic Gaussian distribution and the variance were 
functions of their LOD values or amount of phenotypic 
variation explained. Therefore, a maximum likelihood 
estimation of QTL positions was possible under the 
assumptions made. Based on the best fit model, a number of 
mQTLs were determined and their positions were identified 
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along with computed CI values. The identified mQTLs were 
graphically generated within the programme, which could 
be scaled to reveal the CI and the linked markers. The 
estimated CI values were used to determine the precision 
of mQTLs.

Assessing the mQTL diversity
SSR markers were mined out from the consensus map, at the 
mQTL peak position and used for genotyping the germplasm 
panel. The genotype data was then used to classify the 
panel based on the mQTL diversity. Diversity of genotypes 
was determined using simple matching coefficients as 
the genetic distance measure and by clustering using the 
unweighted neighbour joining method. Diversity analysis 
was carried out using DarWin v.6.0 (Perrier et al. 2003) and 
the dendrogram was drawn using Dendroscope v.3.7.6 
(Abrol and Scornavacca 2012).

Results
A total of 506 QTLs related to N use efficiency and related 
agronomic traits including grain yield were compiled 
from 18 studies published during the period starting from 
2001 to 2021. The QTLs had a distribution all over the 
rice genome (Table 1). The number of individual QTL per 
population ranged from 7 (Feng et al. 2010) to 86 (Nguyen 
et al. 2016). Some of these QTLs were located with larger 
intervals starting from 0.4 cM to 61cM with an average of  
14.24 cM.

The consensus map generated contained a total of 1353 
markers distributed across a total map length of 1257.3 
cM over nine chromosomes, excepting chromosomes 2, 7 
and 12 (Table 2).  Chromosome 1 had the highest marker 
density of 288 with 0.7 cM between markers on average. The 
highest number of QTLs was projected on chromosome 3 
(72 QTLs) followed by chromosome 6 with 61 QTLs. Average 
QTL distance was 2.1 cM on chromosome 8, and 2.8 cM on 
chromosome 3. In total, the consensus map had one marker 
over 0.9 cM distance with one QTL over every 3.8 cM distance 
on average. A lower number of QTLs were projected on 

Table 1. Details of mapping studies used for the identification of meta-QTLs

Cross            Population                    Marker QTLs References

Type Size Type Number

93-11/ Milyang 352 DH 117 KASP 240 28 Kwon et al. 2021

BPT5204/ PTB1 RIL 291 SSR 254 32 Vishnukiran et al. 2020

Zhonghui 9308/ Xieqingzao B CSSL 75 SSR/InD 120 9 Anis et al. 2018

Xieqingzao B/ Zhonghui 9308 RIL 138 SSR 198 52 Yue et al. 2016

IR64/ Azucena RIL 174 SSR 228 86 Nguyen et al. 2016

Xieqingzao B/ Zhonghui 9308 RIL 281 SSR 196 13 Dai et al. 2015

Zhenshan 97/ Minghui 63 RIL 127 RFLP/SSR 220 30 Wei et al. 2012

R9308 / Xieqingzao B RIL 138 SSR 198 21 Feng et al. 2011

Zhenshan 97/ Minghui 63 RIL 127 RFLP/SSR 220 24 Wei 1 et al. 2011

R9308 / Xieqingzao B RIL 228 SSR 198 7 Feng et al. 2010

IR64/ INRC10192 RIL 140 SSR 113 18 Srividya et al. 2010

Zhenshan 97 / HR5 RIL 138 SSR 245 55 Tong et al., 2011

IR64 / Azucena RIL 82 RFLP/RAPD 175 16 Senthilvel et al., 2008

Dasanbyeo/ TR22183 RIL 166 SSR/STS 216 20 Cho et al., 2007

IR69093–41–3–2/ IR72 RIL 101 RFLP/SSR 182 62 Laza et al., 2006

Nipponbare/ Kasalath// Nipponbare BC 98 RFLP 245 13 Obara et al. 2001

IR64/ Azucena DH 123 RFLP/Isozyme 175 20 Fang and Wu 2001

RIL = Recombinant inbred lines; CSSL = Chromosome segment substitution line; BC = Backcross population; DH= Doubled haploid; SSR = 
Simple sequence repeat; InD = Insertion/deletion polymorphism; RFLP = Restriction fragment length polymorphism; RAPD = Random amplified 
polymorphic DNA; STS = Sequence-tagged site; KASP = Kompetitive allele-specific PCR.

Table 2. Details of consensus map generated and the projected QTLs 

Chromosome Length (cM) Density Average distance (cM)

Markers QTLs Marker QTL

1 206.0 288 55 0.7 3.7

3 204.8 134 72 1.5 2.8

4 201.5 79 35 2.6 5.8

5 139.7 194 31 0.7 4.5

6 68.6 153 21 0.4 3.3

8 130.1 148 61 0.9 2.1

9 135.7 124 18 1.1 7.5

10 109.7 96 16 1.1 6.9

11 61.3 137 18 0.4 3.4

Total 1257.3 1353 327 0.9 3.8

QTL = Quantitative trait locus; cM = centimorgan
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chromosomes 9, 10, 11 and 6. 
In the initial meta-analysis carried out using the method 

of Goffinet and Gerber (2000), a total of 31 mQTLs were 
identified distributed over nine chromosomes (Table 3). 
QTLs for traits such as NUE, N content in the shoot (SN), 
root (RN), grain (GN), total plant (TN), grain yield (GY), 
biomass (BM) and glutamine synthetase (GS) activity were 
used for the analysis. The optimal models for mQTLs were 
determined using the lowest Akaike information criterion 
(AIC) and highest Akaike weight.  Chromosomes 3, 4, 5, 8, 9 
and 10 had 4-QTL model optimized while chromosome 1 
and 6 had 2-QTL model optimized. Chromosome 11 showed 
an optimum model with 3-QTLs. The mQTL locations on 

chromosome 1 had an average interval of 3.7 cM, which 
was the lowest among all the mQTLs identified, followed by 
chromosome 11 with a 4.0 cM interval. Other chromosomes 
with lower mQTL intervals were chromosomes 9 and 10 with 
4.3 cM followed by chromosomes 3 and 5 with an average 
interval of 4.7 cM. The widest interval was observed on 
chromosome 6 (7.9 cM) followed by 6.6 cM on chromosome 
4. Similarly, the distribution of mQTLs over chromosomes 
based on the average distance between mQTLs ranged 
between 10.1 cM (chromosome 9) to 19.6 cM (chromosome 
8).  Chromosomes with wider distribution were chromosome 
3 with 16.2 cM average distance followed by chromosome 1 
having a distance of 15 cM between mQTLs. The remaining 

Table 3. mQTLs detected by Goffinet and Gerber method

mQTL Model AIC Weight Chromosome Position Range Average 

Interval Distance

1 2 99.61 0.67 1 81.6 80.2-83.0 3.7 15.0

2 - - - 1 96.6 94.8-99.4 - -

3 4 154.1 0.5 3 63.5 60.3-66.8 4.7 16.2

4 - - - 3 93.2 91.4-94.9 - -

5 - - - 3 104.7 102.8-106.6 - -

6 - - - 3 112.1 109.6-114.7 - -

7 4 118.2 0.66 4 65.1 56.7-73.6 6.6 13.8

8 - - - 4 83.5 82.1-84.9 - -

9 - - - 4 90.2 89.0-91.4 - -

10 - - - 4 106.4 104.2-108.5 - -

11 4 65.7 5 56.8 55.4-58.4 4.7 14.0

12 - - - 5 77.1 76.4-77.8 - -

13 - - - 5 84.2 80.7-87.7 - -

14 - - - 5 98.8 95.1-102.5 - -

15 2 12.5 1 6 30.6 29.2-32.0 7.9 14.2

16 - - - 6 44.8 38.4-51.3 - -

17 4 190.9 0.66 8 16.7 13.4-20.3 5.0 19.6

18 - - - 8 47.6 46.4-48.9 - -

19 - - - 8 58 55.1-60.9 - -

20 - - - 8 75.4 73.0-77.8 - -

21 4 80.6 0.77 9 46.7 42.8-50.5 4.3 10.1

22 - - - 9 62.1 60.0-64.3 - -

23 - - - 9 68.5 66.9-70.1 - -

24 - - - 9 77 76.1-78.0 - -

25 4 84.9 0.51 10 27.2 25.2-29.2 4.3 13.1

26 - - - 10 41.5 39.9-43.2 - -

27 - - - 10 52.7 51.5-54.0 - -

28 - - - 10 66.4 61.8-69.2 - -

29 3 88.8 0.48 11 11 8.8-13.2 4.0 11.1

30 - - - 11 27 24.4-29.7 - -

31 - - - 11 33.1 31.9-34.3 - -

AIC= Akaike information criterion
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chromosomes were found to have mQTLs distributed at an 
average distance of 14.2 cM for chromosome 6, 14.0 cM for 
chromosome 5 and 13.8 cM for chromosome 4. The lowest 
distance was found on chromosomes 9, 10 and 11. More 
elaborate mQTL detection using the QTLClust method 
developed by Veyrieras et al. (2007), identified 12 mQTLs 
distributed over four chromosomes 1, 3, 4 and 8 (Fig. 1). 
Chromosome 1 had two mQTLs, chromosomes 3 and 4 
has three mQTLs each and chromosome 8 possessed four 
mQTLs. These mQTLs were also identified by the previous 
method (Table 4). 

The CI of mQTLs at the 95% level ranged from 0.96 to 
7.03 with an average of 4.04. Since the lowest CI determines 
the most accurate position of mQTLs, only one mQTL on 
chromosome 1 indicated better accuracy with the lowest CI 
value. This mQTL, mQTL1.2 had an average percent variation 
explained (PVE) of 15.5% and was found associated with NUE 
and traits such as SN, GN, LN and BM. On chromosome 1, 
the mQTL1.1 was located at 81.6 cM position and had a CI of 
2.94. This locus had an average PVE of 11.0% and was found 
associated with traits such as GY, TN, RN, and BM, besides 
NUE. On chromosome 3, we could detect three meta loci, 
mQTL3.1, mQTL3.2 and mQTL3.3. Among these, mQTL3.3 
was the most robust with a CI of 2.49 and explained a PVE 
of 26.4%, and having an influence on NUE, RN and GY. Of 
the remaining, mQTL3.2 showed a CI of 4.07 cM followed by 
mQTL3.1 with a CI of 6.6 cM. On the chromosome 4, three 
mQTLs detected had CI ranging between 2.23 to 4.63 cM. 
The first, mQTL4.1 was found associated with LN and GY 
besides NUE with a PVE of 14.3%. The mQTL4.2 was linked 
to GY but with a PVE of 6.7%. However, the third meta locus, 
mQTL4.3 was having an average PVE of 4.5% and was mostly 

associated with NUE, BM, TN and LN. Among the mQTLs on 
chromosome 8, mQTL8.1 and mQTL8.4 had relatively higher 
average PVE with 30.1 and 21.4% respectively. Although the 
CI of mQTL8.1 was 7.03 cM, it was located distinctly away 
from other meta loci with a peak position at 13.5 cM on 
the consensus map. The mQTL8.2 was located at 46.3 cM, 
mQTL8.3 was at 54.9 cM and mQTL8.4 was at 75.5 cM. These 

Table 4. Meta QTLs for nitrogen use efficiency and associated traits detected by Veyrieras’ method.

mQTL ID Chr. mQTL location 95% CI 
(cM)

Associated 
traits*

PVE 
(%)Start End Peak SSR marker within mQTL

mQTL 1.1 1 80.19 83.01 81.6 RM490, RM10890, RM7075, RM576, RM10916, RM575, RM259, 
RM243

2.94 GY, TN, RN, BM 11.0

mQTL 1.2 1 94.8 98.4 96.6 RM562, RM595, RM157B, RM294B, RM128, RM129, RM403 0.96 SN, GN, LN, BM 15.5

mQTL 3.1 3 60.3 66.8 64.0 RM545 6.60 GY, TN 12.4

mQTL 3.2 3 91.4 94.9 91.9 RM156, RM6483, RM487, RM411, RM16 4.07 BM 10.0

mQTL 3.3 3 104.7 114.7 110.8 RM85 2.49 RN, GY 26.4

mQTL 4.1 4 80.9 85.6 83.3 RM564B, RM119 4.63 LN, GY 14.3

mQTL 4.2 4 88.0 92.5 90.3 RM273, RM252, RM456A 4.43 GY 6.7

mQTL 4.3 4 105.6 107.8 106.7 - 2.23 BM, TN, LN 4.5

mQTL 8.1 8 13.5 20.5 17.0 RM506, RM5911, RM337, RM408, RM407 7.03 LN, RN 30.1

mQTL 8.2 8 46.3 49.0 47.7 RM556, RM310, RM544, RM547, RM126 2.62 LN, GN, SN, GY, 
BM

14.7

mQTL 8.3 8 54.9 61.0 58.0 RM5767, RM42, RM38, RM223, RM515, RM342A, RM32, RM284 6.09 GN, BM 18.2

mQTL 8.4 8 73.3 77.7 75.5 RM256, RM5891, RM80 4.44 GS, BM, SN 21.4

BM = Biomass; SN = Shoot nitrogen; GN = Grain nitrogen; LN = Leaf nitrogen; RN = Root, nitrogen; TN = Total plant nitrogen; GY = Grain yield; 
GS = Glutamine synthetase; CI = Confidence interval; PVE = Average percentage of phenotypic variation explained; *Associated traits are in 
addition to nitrogen use efficiency-related QTLs

Fig. 1. �Genomic locations of Meta QTL detected for nitrogen use 
efficiency and associated traits in rice
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QTLs were associated with LN, GN, SN, GY and BM. Besides 
mQTL8.4 has reported an association with GS activity.

Diversity of few mQTLs in the germplasm panel
Microsatellite markers were mined out from the mQTL 
intervals across the chromosomes. We could identify 
47 SSR markers falling within the QTL regions from the 
consensus map (Table 4), except for mQTL4.3, which did not 
contain any SSR marker. Out of these, we have selected a 
maximum of two representative SSRs per mQTL, wherever 
possible for genotyping. Twenty selected markers were run 
across 65 genotypes used for constituting the germplasm 
assembly and found that only six markers could generate 
sufficient genotype data for further analysis. These markers 
belonged to five mQTLs, mQTL1.1, mQTL4.2, mQTL8.1, 
mQTL8.2 and mQTL8.4. Data for markers that generated 
monomorphic bands, poor and ambiguous amplification 
etc. were dropped from the analysis. Genotyping revealed 

that all the five mQTLs showed significant variation among 
the genotypes, based on the marker allele distribution, 
which was predominantly biallelic, except for one triallelic 
marker, RM310 (Table 5). The frequency of alleles indicated 
random distribution for only two markers RM407 and RM310 
associated with mQTL8.1 and mQTL8.2. For the remaining 
markers, however, the allele distribution was near random. 
The genotypes were further grouped based on the allele 
pattern into three major groups, of which one group 
contained 14 genotypes comprising mostly of semidwarf 
indica rice lines and some of the tall landraces (Fig. 2). The 
second group was relatively small with five genotypes but 
contained high N use efficient genotypes such as Nidhi, IR 
50 and MTU 1010. The third group was the largest with 15 
genotypes, which majorly included Basmati and aromatic 
rice and mega varieties such as IR 64 and BPT 5204. 

Discussion 
There are several genes identified in the rice genome that 
regulate N uptakes and assimilation (Baligar et al. 2001). 
Primarily, uptake is regulated by nitrate transporters (NRT) 
and ammonium transporters (AMT) which carry the N from 
the soil into the plant system and undergo primary and 
secondary assimilation processes (Vinod and Heuer 2012). 
Key enzymes involved in the uptake processes are OsNRT1 
(Lin et al. 2000) and OsAMT1 (Sonoda et al. 2003), while the 
primary N assimilation takes place with the help of nitrite 
reductase (NR) and nitrite reductase (NiR), followed by GS 
and glutamate synthase (GOGAT) (Obara et al. 2001a). Other 
than these, there are minor enzymatic systems involved 
in the N metabolism. Although a constitutive trait, the 
efficiency of N use in plant vary widely due to the presence 
of several associated genes that are continuously being 
mapped as QTLs. Since most of these QTLs are reported to 
have a low effect and are specific to certain backgrounds, use 
of them in crop improvement programmes remains limited. 
Taking into account an impressive number of studies for N 
use efficiency and yield-related parameters in rice over the 
past 20 years and a large number of initial QTLs predicted, 
this mQTL study could assemble significant regions on an 
integrated map. The meta-analysis in this study used an 
initial set of 506 QTLs, which was reduced by 35.4% in the 

Table 5. SSR markers identified polymorphic among the germplasm panel

Marker mQTL Alleles Frequency HWE probability

Allele1 Allele2 Allele3

RM243 mQTL1.1 2 0.38 0.62 - 0.02

RM252 mQTL4.2 2 0.29 0.54 - 0.00

RM273 mQTL4.2 2 0.37 0.40 - 0.02

RM407 mQTL8.1 2 0.45 0.55 - 0.28

RM310 mQTL8.2 3 0.29 0.31 0.38 0.48

RM80 mQTL8.4 2 0.31 0.40 - 0.00

HWE = Hardy Weinberg equilibrium

Fig. 2. �The pattern of grouping of germplasm lines based on the 
mQTL linked markers. Significant bootstrap values are 
indicated in the respective nodes.
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initial projection. From these, 9.48% was initially identified 
as mQTLs using the model-based approach (Goffinet and 
Gerber 2000), which was further reduced to 3.7% using the 
clustering approach by Veyrieras et al. (2007). In the former 
approach, the QTLs are checked to see whether they fall 
into any one of the five models, namely, 1-, 2-, 3-, 4- or 
N-QTL models when they are colocalised. One QTL model 
identifies a single location where QTLs can be congregated. 
The optimal models are determined using the AIC criterion, 
wherein the lowest AIC is taken as the best model. Since it 
is assumed that each QTL has a Gaussian distribution from 
its peak position, maximum likelihood estimates are used 
to determine the QTL position by considering the mean QTL 
distribution that maximizes the likelihood. The reason why 
only four QTL models are used other than the N-QTL model 
comes from the assumption of a 200 cM chromosome, that 
can be divided into a maximum of four linkage segments of 
50cM each. Therefore, this method is useful when the QTLs 
are few to many. Ideally, each chromosome of 200 cM must 
contain 10 to 40 QTLs for performing the analysis (Arcade 
et al. 2004). Unlike this method, the second approach looks 
for more realistic mQTLs through a clustering procedure. 
In this case, also a perfect Gaussian distribution is assumed 
around the QTL position, and the unbiased approximation 
of the positions is made through the maximum likelihood 
method. This method reports fewer QTLs than the previous 
method and is useful when QTLs per locus is more than ten. 

The CI of the detected mQTLs ranged from a narrow 
distance to wide in the present study. In the meta-analysis, 
CIs are determined based on the reported QTLs and their 
location accuracy. While preparing the consensus map, 
the accuracy of the initial QTLs and the critical points were 
considered. To measure the locations and CI on mapping of 
initial QTLs, it is recognized that interval mapping (IM) and 
composite interval mapping (CIM) are more reliable than the 
ANOVA-based methods. Therefore, to guard the accuracy, 
we have taken note to include only those studies in which 
IM and CIM were used for QTL mapping. Identification of 
several consensus QTLs further reaffirmed that N use in rice 
is governed by complex genetic regulation. The PVE of the 
mQTLs were found relatively stronger and ranged between 
6.7% to 30.1% indicating significant association to NUE and 
its associated traits. Therefore, one of the possible ways to 
improve N use efficiency is to use the QTLs individually or 
to pyramid them, in marker-assisted breeding programmes. 
The mQTL distribution showed that chromosomes 1, 3, 4 and 
8 harboured the most frequently detected QTLs for NUE and 
associated traits from the previous studies. Chromosome 1, 
despite having the largest number of markers, showed only 
two mQTLs, but with shorter confidence intervals and good 
PVE values, indicating that these QTLs can be of greater 
significance in crop improvement. It was interesting to find 
that the mQTL1.1 linked marker, RM243 had shown significant 

association with GN, particularly under high N conditions, 
indicating that this QTL location may be important in the 
N assimilation process. On chromosome 3, three mQTLs 
were found which were mostly associated with GY under N 
nutrition. Of the meta loci detected on chromosome 4, the 
mQTL4.2 was also associated with GY. Confirming this, the 
associated marker RM252 showed significant association 
with agronomic and physiological NUE, shoot N content 
and chlorophyll content on the flag leaf. Other mQTLs on 
chromosome 4, were predominantly associated with N 
content in the plant system, indicating the plausible role in 
N reservoir activity. On chromosome 8, all the four mQTLs 
showed prominence, based on the PVE, out of which three 
were tested in this study among the germplasm. We found 
that mQTL8.1 could be of particular interest concerning 
low N tolerance, because of the significant association 
shown by its linked marker RM407 on traits such as grain N, 
N assimilation efficiency and physiological NUE. Similarly, 
RM310 linked to mQTL8.2 and RM80 linked to mQTL8.4 also 
indicated significant relation to N content in shoot and 
grain as well as with flag leaf chlorophyll content. RM310 
was found consistently associated with several N use 
parameters such as N harvest index, N content in grain, NUE, 
N assimilation efficiency and grain yield efficiency index. 
The trait associations on chromosome 8 revealed that there 
may be several genes associated with N assimilation found 
distributed on this chromosome.

These observations on meta-loci further lead to studies 
on exploring candidate genes involved in N use processes 
in rice. Although we have tested the validity of five mQTLs 
out of 12 identified, the results from the linked markers have 
been very encouraging because all the markers showed 
significant association with one or the other trait linked 
to N use either under low, medium, or high N conditions. 
Additional studies by including all the loci need to be 
undertaken, particularly using a larger germplasm set. 
Altogether, the twelve mQTLs found on chromosomes 1, 3, 
4 and 8 constituted about 17.1% of the total QTLs projected 
on the consensus map implying QTL Meta-analysis as an 
effective tool to integrate and evaluate QTLs from several 
studies. Based on the results, we could assimilate some 
general conclusions related to the genetic architecture 
of N use efficiency in rice. The NUE in rice is determined 
by a large number of QTLs which are distributed on all 
chromosomes and therefore show broad diversity. This 
is particularly relevant because the sources of the QTLs 
analysed herein were mostly independent genotypes 
that were originated in different regions across the world. 
Some of these genotypes were developed in China such as 
Xieqingzao B, Zhonghui 9308, Zhenshan 97 and Minghui 
63 and some others were developed at IRRI (IR64, IR72 and 
IR690093). Some genotypes were originated from India, 
such as BPT5204, PTB1 and Kasalath. Besides, there were 
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several japonica lines involved such as Azucena, Niponbare, 
and Milyang 352. Notwithstanding with a limited search 
with five mQTLs in a relatively small set of Indian rice lines, 
we could find that the linked markers had a near-random 
distribution, indicating that most of the major loci related 
to N use are well distributed in local germplasm. Therefore, 
careful integration of these QTLs into target backgrounds 
can help in improving N use. However, the QTLs diversity for 
this trait also implies the complexity of breeding for NUE and 
forewarns on the judicious selection of founder parent in an 
introgressive breeding programme. This partly explains the 
slow progress in breeding for NUE where a random selection 
of parents might not provide any significant advantage. 
Also, this partly explains the slow response to selection for 
NUE-related traits. 

The mQTL analysis provided a wonderful opportunity 
for consolidating a large set of discovered QTL to a handful 
of mQTLs with accurate CI. Having marked effect on the 
NUE, these QTLs can be used for the production of N use 
efficient genotypes by Marker-assisted selection. The 
following criteria can be taken into account for choosing 
mQTL for selection, such as the one with a small CI, and 
having a high mean additive effects. Since these mQTLs 
were consolidated from different genetic backgrounds, they 
may likely work across a large set of breeding lines and will 
aid in identifying the donors in the local germplasm. These 
mQTLs may be attempted into marker-assisted breeding 
programmes aimed at developing N use efficient rice  
genotypes.
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