Indian J. Genet., 75(3): 301-306 (2015) DOI: 10.5958/0975-6906.2015.00047.4

Molecular mapping of leaf rust resistance gene in wheat line 19HRWSN-76

Han Liusha[#], Li Zaifeng[#], Wang Jiazhen, Shi Lingzhi, Zhu Lin, Li Xing* and Liu Daqun

College of Plant Protection, Biological Control Centre of Plant Diseases and Plant Pests of Hebei, Agricultural University of Hebei, Baoding, China 071 001

(Received: November 2014; Revised: May 2015; Accepted: June 2015)

Abstract

A highly leaf rust resistant genetic stock 19HRWSN-76 from CIMMYT was crossed to a susceptible variety Zhengzhou 5389 to generate F_1 and F_2 population to find out the mode of inheritance and map the resistance gene. The F_2 population was inoculated with uredosporic inoculum of physiological race FHJP of leaf rust. The 3:1 ratio of resistant and susceptible plants in F_2 suggested that the leaf rust resistance in 19HRWSN-76 is controlled by a single gene, tentatively named Lr19HRWSN-76. Relationship between the known leaf rust resistance gene Lr24 and Lr19HRWSN-76 located on chromosome 3D was established by SSR marker barc71 and STS 24-16.

Key words: Leaf rust resistance gene, molecular

marker, genetic analysis, molecular

mapping

Introduction

Wheat is a widely grown cereal crop around the world. In China, the acreage of wheat is only second to rice. Wheat leaf rust (*Puccinia triticina* Eriks.) is one of the major diseases inflicting 40% or more yield losses under severe conditions and thereby affecting the production (Knott 1989). The cultivation of resistant varieties of wheat is the most economic, safe and effective method to prevent leaf rust. More than 100 wheat leaf rust resistance genes have been discovered domestic and foreign, 76 have been officially named (Singh et al. 2013). The majority of wheat leaf rust resistance genes have been rendered ineffective by new virulences of leaf rust, only few genes such as *Lr*9, *Lr*19, *Lr*24, *Lr*38 still possess resistance against Chinese leaf rust pathotypes. Therefore, the study of

inheritance of resistance to leaf rust of wheat, and searching for new resistance genes constantly is important in controlling leaf rust incidence in wheat.

The use of molecular markers is a common research method to assist in biological studies, not limited by season, environment, high polymorphism, and is able to identify homozygous and heterozygous genotypes. Leaf rust resistance genes in EST, AFLP can be converted into stable and simple SCAR, STS markers (Sacco et al. 1988; Gupta et al. 2005). STS marking technology is simple, quantitative, easy to test and can be used for marker-assisted selection. Schachermayr et al. (1994) used STS markers of Lr9, Lr19 and Lr24 to test 55 common wheat varieties in Russia. Chen et al. (2008) detected 33 wheat leaf rust resistant varieties using Lr19 STS molecular marker and provided reliable information for cultivating diseaseresistant varieties. Simple sequence repeats (SSRs) is a series of dozens of nucleotide repeats by a few nucleotides (usually 1-6) as the repeat unit, can distinguish between homozygous and heterozygous genotype, with a low requirements for template DNA, simple operation, short cycle, widespread application in wheat, corn, barley, rice and other crops. At present, several wheat leaf rust resistance genes have been discovered and located using SSR markers (Suenaga et al. 2001; Zhang et al. 2005; Blaszczyk et al. 2004; Zhang et al. 2011; Kuraparthy et al. 2007).

Lr24 still possesses a high degree of resistance in many geographical areas of the world including China and India. Schachermayr et al. (1995) identified STS

^{*}Corresponding author's e-mail: lixing@hebau.edu.cn

^{*}These authors contributed equally to this study

marker OPJ09 completely linked with *Lr24*, whereas Zhang et al. (2008) designed a STS marker using an EST-SSR marker co-segregating with *Lr24*, which can amplify a 180 bp fragment. The fragment has been cloned, without any overlap with OPJ09, a marker from the common wheat. SCAR marker S1302-609 developed and validated by Gupta et al. (2006) which amplifies a specific 609 bp band.

The wheat line 19HRWSN-76 derived from a cross THELIN/3/2*BABAX *Lr*42//BABAX is developed by CIMMYT having good comprehensive traits and resistance to leaf rust pathotypes. Han et al. (2011) determined that 19HRWSN-76 carried seedling and slow rusting resistance to leaf rust against Chinese pathotypes. The present study postulated and mapped the resistance gene carried by the line 19HRWSN-76.

Materials and methods

The resistant parent 19HRWSN-76, susceptible parent Zhengzhou 5389, F₁ (19HRWSN-76 x Zhengzhou 5389) and F₂ plants were included in the genetic analysis. Thirty-six near-isogenic lines with known leaf rust resistance genes were kindly provided by the USDA-ARS Cereal Disease Laboratory, University of Minnesota, St Paul, MN, USA. The 15 *P. triticina* pathotypes used in multi-pathotype comparisons (Table 1) and genetic analysis are maintained at the Biological Control Centre of Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, China.

Seedling resistance and genetic analysis

The parents 19HRWSN-76 and Zhengzhou 5389 and 36 near-isogenic lines in Thatcher background were inoculated with 15 leaf rust pathotypes (Table 1) for comparing the leaf rust reaction arrays. Both the 19HRWSN-76 and Zhengzhou 5389, 20 F₁ plants and 207 F₂ individuals were inoculated with Chinese P. triticina pathotype FHJP (virulent on Zhengzhou 5389 and avirulent on 19HRWSN-76). Seedlings were grown in a growth chamber. When the first leaf was fully expanded, inoculations were performed by brushing urediniospores from a sporulating susceptible genotype onto the seedlings to be tested. Inoculated seedlings were placed in plastic-covered cages and incubated at 18°C and 100 % relative humidity for 12 h. They were then transferred to a growth chamber maintained with 12 h light/12 h darkness at 18-22°C with 70 % RH. Infection types were scored 14 days after inoculation according to the Stakman scale modified by Roelfs et al. (1992). Which is divided into 0,; , 1, 2, 3, 4, which level 0 ~ 2 is for disease resistance, 3 ~ 4

for disease susceptible. Gene postulation was done according to the method put forward by Dubin et al. (1989).

DNA extraction and PCR amplification

Genomic DNA was extracted from F_2 plants using the CTAB protocol (Sharp et al. 1988), and diluted to the required concentration with TE. Referred to bulk segregant analysis (BSA), genomic DNA from 10 resistant and 10 susceptible F_2 plants were mixed in equal amounts to form resistant and susceptible bulks (Michelmore et al. 1991). DNA samples of the two parents and bulks were screened for polymorphisms of markers.

The 626 pairs of wheat SSR markers in 21 wheat chromosomes and two molecular markers of coseparation with *Lr24* (*STS24-16*, *S1302-609*) were used in this study. The SSR markers showing polymorphism between resistant and susceptible bulks were used for linkage analysis in F₂ plants. The primer sequences described by Roder et al. (1998) are available at the GrainGenes site (http://www.graingenes.org). The primer sequences for *STS24-16* are *STS24-16*F: 5'-CTTCGGACAGGAGGGTATGA-3', *STS24-16*R: 5'-GGACAGCTGTAAACGGGTTC-3' (Zhang et al. 2008). And the primer sequences for *S1302-609* are *S1302-609*F: 5'-CGCAGGTTCCAAATACTTTTC-3', *S1302-609*R: 5'-CGCAGGTTCTACCTAATGCAA-3' (Gupta et al. 2006).

Polymerase chain reactions (PCR) were performed in volumes of 10 ul with 1.0 U Taq of DNA polymerase (Zexing Biotechnology Co. Ltd, Beijing, China); 1× PCR buffer (25 mM KCl, 5 mM Tris-HCl, 0.75 mM MgCl2, pH 8.3); 100 uM each of dNTP, 3 pmol of each primer, and 30 ng of template DNA. The PCR conditions were a denaturation at 94°C for 5 min, followed by 35 cycles of 94°C for 1 min, 55-65°C (depending on the primer pair) for 1 min, 72°C for 1 min and a final extension at 72°C for 10 min. Based on differences in molecular weight of the amplified products were detected by polyacrylamide gel electrophoresis and analyzed by agarose gel electrophoresis.

Results

Gene postulation

In seedling stage, inoculations were done with 15 *P. triticina* pathotypes on 19HRWSN-76, Zhengzhou 5389, and 36 nearly isogenic lines with single known resistance gene (Table 1) to compare the infection

Table 1. Seedling infection types in 19HRWSN-76, Zhengzhou 5389 and 36 near-isogenic lines with known leaf rust resistance gene to 15 pathotypes of *Puccinia triticina*

Line	Gene	Pathotype														
	_	PH JS	MH JS	FH DQ	FG BQ	FH BR	FH BQ	FG BR	TH JL	FH DR	FG DQ	FH DS	TH JP	TG TT	PH GN	TH JC
RL6003	Lr1	4	4	;	;	;	;	;	4	0	;	0	4	4	4	4
RL6016	Lr2a	;	;	1+	;	;	1	1	3	;	;	2	3	3	;	4
RL6047	Lr2c	4	1	4	4	4	4	4	4	4	4	4	4	4	4	4
RL6002	Lr3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
RL6010	Lr9	;	;	;	;	0;	0	0	;	0	0	;	;	;	0	;
RL6005	Lr16	4	4	4	4	4	4	3+	3+	4	4	4	4	4	3	4
RL6064	Lr24	;1	;	;	;	;	;	;	;	;	;	;	;	;	;	;
RL6078	Lr26	4	4	4	1	4	4	;	4	4	1	4	4	2	4	4
RL6007	Lr3ka	Χ	Χ	;	;	;	;	1	1	;	;	;	1	4	;	Χ
RL6053	Lr11	4	4	1	;	;	1+	2	3+	1	1	2	4	3+	4	4
RL6008	Lr17	4	3+	3+	2	2	2	2+	4	3+	4	4	4	4	2+	4
RL6049	Lr30	3C	1	1	;	;	;	;	1	;	;	;	;	4	;	1
RL6051	LrB	3+	4	4	4	3+	4	4	3+	4	4	4	4	4	4	Χ
RL6004	Lr10	3	3	4	4	4	4	4	2	4	4	4	2+	4	1	Χ
RL6013	Lr14a	4	4	Χ	Χ	Χ	Χ	Χ	Χ	Χ	2	4	4	4	3+	Χ
RL6009	Lr18	1	1+	2	2	4	2	4	1+	4	2+	2	4	3+	3C	3
RL6019	Lr2b	1	0;	4	;	3	3+	2	4	3	3+	3+	2	4	3C	4
RL6042	Lr3bg	4	4	4	4	4	3+	4	4	4	4	4	4	4	4	4
RL4031	Lr13	3	4	4	3	3	4	4	3	3	2	3+	4	4	4	4
RL6006	Lr14b	4	4	4	4	4	4	4	4	4	4	4	Χ	4	Χ	4
RL6052	Lr15	1	;	;	;	;	;	;	4	1	;	;	4	3+	4	4
RL6040	Lr19	0	0	;	0	0	;	0	0	0	0	;	0	0	0	;
RL6092	Lr20	4	4	;	;	;	;	0	;	;	;	;	4	1	4	;
RL6043	Lr21	4	2	2	;	2+	3	2	;	1	;	1+	;	3	1	1
RL6012	Lr23	4	4	4	3+	3+	4	3+	1	4	4	4	4	4	3+	4
RL6079	Lr28	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RL6080	Lr29	0	0	0	0	;	0	0	;	;	0	3+	4	;	0	0
RL6057	Lr33	3	4	3+	3+	3+	4	2+	3C	3+	3	4	4	4	3+	3+
E84018	Lr36	4	2	1+	;	2	2	1	1	2	2+	3	2+	3+	2+	3+
KS86 NGRC02	Lr39	;	;1	;	;	;	;	;	;	;	;	;	;	;	;	;
KS91 WGRC11	Lr42	;	;	;	0	0	;	;	;	1	;	;	0	;	0	1
RL6147	Lr44	1	;	4	4	4	4	4	1	4	4	4	;	1+	;1	1
RL614	Lr45	4	4	4	4	4	4	4	;	4	4	4	4	;	;	;
PAVON76	Lr47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C78.5	Lr51	;	;	;	;	1	;	0	;	;	;	;	0	;	;	;
-98M71	Lr53	;	0	0	0	0	0	0	;	0	0	0	0	0	0	0
19HRWSN-76	LrHRWSN-76	1	:	0	:	:	:	:	0	:	:	0	:	0	:	:
Zhengzhou 5389	+	4	4	4	4	3+	4	4	4	4	4	4	4	4	4	4

C = More chlorosis than normal for infection type; + = Uredinia somewhat larger than normal for the infection type

types of 19HRWSN-76 and 36 nearly isogenic lines to *P. triticina* pathotypes. The results showed that the 19HRWSN-76 was immune or highly resistant to all pathotypes. In 36 near isogenic lines, RL6010(*Lr9*), RL6064(*Lr24*), RL6040(*Lr19*), RL6079(*Lr28*), KS86/NGRC02(*Lr39*), KS91/WGRC11(*Lr42*), PAVON76 (*Lr47*), C78.5(*Lr51*), 98M71(*Lr53*) were immune or highly resistant to the 15 *P. triticina* pathotypes. So that, if there is a pair of disease-resistance gene in 19HRWSN-76, it be among those listed above.

Genetic analysis

The sedling reactions against FHJP pathotype of resistant parent (19HRWSN-76), the susceptible parent (Zhengzhou 5389) and their F_1 are presented in Table 1. All 20 seedlings each of the resistant and susceptible parents showed resistant and susceptible reactions to pathotype FHJP, respectively. Out of the 207 F_2 seedlings, tested, 147 were resistant while 60 susceptible. Chi-square test was in accordance with the ratio of 3:1 ($\chi^2_{0.05} = 1.91 < \chi^2_{0.05} = 3.84$). Results from the F_2 populations indicated that a single dominant gene, tentatively designated Lr19HRWSN-76, conferred resistance to leaf rust pathotype FHJP in 19HRWSN-76.

The linkage analysis and genetic mapping

Of the 626 SSR markers, *Xbarc71* (Fig. 1) at the distal end of chromosome 3D showed polymorphism between the resistant and susceptible bulks as well as the parents. This indicated that *LrHRWSN-76* was located on chromosome 3D. There were two known leaf rust resistance genes (*Lr32*, *Lr24*) located on chromosome 3D. *Lr32* is located on the short arm of chromosome 3D and located far away from *Xbarc71*. *Lr24* was located on the long arm without any linked SSR markers reported so far. The STS marker *STS24-16* and SCAR marker *S1302-609* co-segregated with *Lr24*. In F₂ population, it was found that these two markers are linked with *Lr19HRWSN-76*. The three polymorphic markers *Xbarc71*, *STS24-16* and *S1302-*

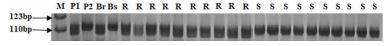


Fig. 1. Specific PCR amplified fragments of parents, resistant and susceptible bulks, and F₂ population with the SSR marker *Xbarc71*. M: PBR322 marker; P1: The resistant parent 19HRWSN-76; P2: The susceptible parent zhengzhou5389; Br: The resistant bulk; Bs: The susceptible bulk; R: The resistant plants in F₂ population; S: The susceptible plants in F₂ population

609 were then screened on DNA of 207 F_2 plants previously tested with leaf rust. A newly identified resistance gene *Lr19HRWSN-76* was linked to these three markers with genetic distances ranging from 3.0 cM to 4.0 cM (Fig. 2). The closest marker was SSR marker *Xbarc71* with genetic distance of 3.0 cM.

Discussion

Depending on the experimental conditions and goals, researchers have chosen various methods of developing wheat leaf rust resistance genes, including traditional hybridization, genetic postulation, and molecular markers. These methods can be used alone or in combination. The present method combined traditional hybridization, genetic postulation, and use of molecular markers methods to make up for the individual limitations of each method and produce more accurate and reliable results. The F2 population derived from 19HRWSN-76 and Zhengzhou 5389 showed 3:1 ratio, proving that the seedling resistance is controlled by a dominant gene. In the field tests, F₂ population showed deviation from theoretical ratio of 3:1, proving that resistance at adult plant stage in 19HRWSN-76 may be controlled by a number of genes.

However, a planned study is needed to find out the number of genes governing adult plant resistance. The pedigree of 19HRWSN-76 indicate that it may carry another leaf rust resistance gene *Lr42*. However, the gene *Lr42* is lacked on 1D chromosome and therefore the possibility of the presence of Lr42 is ruled out. Gene postulation showed that 19HRWSN-76 was resistant to all of the leaf rust pathotypes in seedling stage. Among the 36 near-isogenic lines, resistance to all the leaf rust pathotypes was observed on lines Tc*Lr9* Tc*Lr24*, Tc*Lr19*, Tc*L28*, Tc*Lr39*, Tc*L42*, Tc*Lr47*, Tc*Lr51*, Tc*Lr53*. Genetic analysis and chi-square test

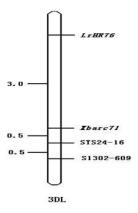


Fig. 2. Linkage map of leaf rust resistance gene *LrHRWSN*

indicated that there is a single dominant gene in 19HRWSN-76, which may be diverse than *Lr9*, *Lr24*, *Lr19*, *Lr28*, *Lr39*, *Lr42*, *Lr47*, *Lr51* and *Lr53*, as these genes are located on different chromosomes except the genes *Lr24* and *Lr32*. Linkage map contains three tags, all were located on 3DL chromosome, including a SSR and STS markers and a SCAR marker of coseparation with *Lr24*. This further proves that the resistance conferred by 19HRWSN-76 locatged on chromosome 3DL is different than displayed by *Lr9*, *Lr19*, *Lr28*, *Lr39*, *Lr42*, *Lr47*, *Lr51*, and *Lr53*.

Marker *STS24-16* showed co-separation with an alian gene *Lr24* derived from *Thinopyrum ponticum*. *STS24-16* and *S1302-609* are linked with *Lr19HRWSN-76*. Therefore, we speculate that the resistance in 19HRWSN-76 is different from *Lr24* and may be a new leaf rust resistance gene. However, to establish the relationship between 19HRWSN-76 and *Lr24*, a test of allelism will be required to perform.

Acknowledgements

This work was supported by Hebei Provincial Outstanding Youth Project under Grant [number YQ2013024]; National Natural Science Foundation (International/Regional Cooperation and Exchange Program) under Grant [number 31361140367] the joint specialized Research Fund for the Doctoral Program of higher eudcation under grant number 20131302120004.

References

- Blaszczyk L., Goyeau H., Huang X. Q., Röder M., Stepieñ L. and Che³kowski J. 2004. Identifying leaf rust resistance genes and mapping gene *Lr37* on the microsatellite map of wheat. Cell. Mol. Biol. Letters, **9**: 869-878.
- Brown-Guedira G. L., Singh S. and Fritz A. K. 2003. Performance and mapping of leaf rust resistance transferred to wheat from *Triticum timopheevii* subsp. Armeniacum. Phytophathol., **93**: 784-789.
- Chen Y. F., Liu L., Yang W. X. and Liu D. Q. 2008. Molecular marker detection of leaf rust resistance gene *Lr*19 in 33 commom wheat cultivars. Mol. Plant Breed., **6**: 1015-1018.
- Dubin H. J., Johnson R. and Stubbs R. W. 1989. Postulated genes for resistance to stripe rust in selected CIMMYT and related wheats. Plant Dis., **73**: 472-475.
- Gupta S. K., Charpe A., Koul S., Haque Q. and Prabhu K. V. 2006. Development and validation of SCAR markers co-segregating with an *Agropyron elongatum* derived leaf rust resistance gene *Lr*24 in wheat. Euphytica, **150**: 233-240.

- Gupta S. K., Charpe A., Koul S., Prabhu K. V. and Haq Q. M. 2005. Development and validation of molecular markers linked to an *Aegilops umbellulata*-derived leaf-rust-resistance gene, *Lr*9, for marker-assisted selection in bread wheat. Genome, **48**: 823-830.
- Han Y., He Z. H., Xia X. C., Li X., Li Z. F. and Liu D. Q. 2011. Seedling and slow rusting resistances to leaf rust in CIMMYT wheat lines. Acta Agronomica Sinica, **37**: 1125-1133.
- Knott D. R. 1989. The wheat- rust breeding for resistance. Monographs on Theor. Appl. Genet., 12th edn. Springer Berlin, Germany.
- Kuraparthy V., Sood S., Chhuneja P., Dhaliwal H. S., Kaur S., Bowden R. L. and Gill B. S. 2007. A cryptic wheat-Aegilops triuncialis translocation with leaf rust resistance gene *Lr*58. Crop Sci., **47**: 1995-2003.
- Messmer M. M., Seyfarth R., Keller M., Schachermayr G., Winzeler M., Zanetti S., Feuillet C. and Keller B. 2000. Genetic analysis of durable leaf rust resistance in winter wheat. Theor. Appl. Genet., **100**: 419-431.
- Michelmore R. W., Paran I. and Kesseli R. V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS, 88: 9828-9832.
- Raupp W. J., Sukhwinder-Singh Brown-Guedira G. L. and Gill B. S. 2001. Cytogenetic and molecular mapping of the leaf rust resistance gene *Lr39* in wheat. Theor. Appl. Genet., **102**: 347-352.
- Roder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P. and Ganal M. W. 1998. A microsatellite map of wheat. Genetics, **149**: 2007-2023.
- Roelfs A. P., Singh R. P. and Saari E. E. 1992. Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico.
- Sacco F., Suarez E. Y. and Narango T. 1988. Mapping of the leaf rust resistance gene *Lr*3 on chromosome 6B of Sinvalocho MA wheat. Genome, **41**: 686-690.
- Schachermayr G. M., Messmer M. M., Feuillet C., Winzeler H., Winzeler M. and Keller B. 1995. Identification of molecular markers linked to the *Agropyron elongatum* derived leaf rust resistance gene *Lr*24 in wheat. Theor. Appl. Genet., **90**: 982-990.
- Schachermayr G., Siedler H., Gale M. D., Winzeler H., Winzeler M. and Keller B. 1994. Identification and localization of molecular markers linked to the *Lr*9 leaf rust resistance gene of wheat. Theor. Appl. Genet., **88**: 110-115.
- Sharp P. J. Kreis M., Shewry P. R. and Gale M. D. 1988. Location of β -amylase sequence in wheat and its relatives. Theor. Appl. Genet., **75**: 286-290.
- Singh D., Mohler V. and Park R. 2013. Discovery,

- characterisation and mapping of wheat leaf rust resistance gene *Lr*71. Euphytica, **190**: 131-136.
- Suenaga K., Singh R. P., Huerta-Espino J. and William H. M. 2001. Tagging of slow rusting genes for leaf rust, *Lr*34 and *Lr46*, using microsatellite markers in wheat. JIRCAS Research Highlights, **93**: 881-890.
- Zhang H., Xia X. C., He Z. H., Li X., Li Z. F. and Liu D. Q. 2011. Molecular mapping of leaf rust resistance gene *LrBi16* in Chinese wheat cultivar Bimai 16. Mol. Breed.. **28**: 527-534.
- Zhang N., Yang W. X., Li Y. N., Zhang T. and Liu D. Q. 2007. Developing molecular markers for leaf rust resistance gene *Lr*45 in wheat based on SSR. Acta Agronomica Sinica, **33**: 657-662.

- Zhang N., Cheng Y. T., Li Y. N., Zhang L. R., Meng Q. F., Zhang T., Yang W. X. and Liu D. Q. 2008. A novel STS marker for leaf rust resistance gene *Lr*24 in wheat. Acta Agronomica Sinica, **34**: 212-216.
- Zhang W. J., Lukaszewaki A. J., Kohner J., Soria M. A., Goyal S. and Dubcovsky J. 2005. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (*Lr*19) and yellow pigment (Y) genes from *Lophopyrum ponticum*. Theor. Appl. Genet., **111**: 573-582.
- Zhou H. X., Xia X. C., He Z. H., Li X., Wang C. F., Li Z. F. and Liu D. Q. 2013. Molecular mapping of leaf rust resistance gene *LrNJ97* in Chinese wheat line Neijiang 977671. Theor. Appl. Genet., **126**: 2141-2147.