
Abstract
Okra [Abelmoschus esculentus (L.) Moench] is a key vegetable crop in tropical and subtropical regions, exhibiting varying performance 
across different environmental conditions due to genotype-environment interactions. The present study was aimed at the identification 
of high performing and stable okra genotypes using the MultiTrait Stability Index (MTSI) and the Multi-Trait Genotype-Ideotype Distance 
Index (MGIDI). A total of 42 okra accessions were evaluated over different seasons for 12 morphological traits. MTSI and MGIDI analysis 
consistently identified four superior genotypes, namely, UAHS-8, UAHS-10, UAHS-11 and UAHS-19, that exhibited stability and high 
performance across seasons. Key traits contributing to the ideal genotypes included average fruit weight and fruit yield per plant. 
The molecular diversity analysis revealed significant genetic diversity among the genotypes, with 35 out of 45 SSR markers showing 
polymorphism and a high average Polymorphism Information Content (PIC) value of 0.69. The comparison between morphological 
and molecular dendrograms using the tanglegram shows there are overlapping clusters with a low cophenetic correlation, indicating 
environmental influence on phenotypic traits. Correlation analysis highlighted significant relationships among traits, such as a positive 
correlation between average fruit weight and fruit yield per plant (r = 0.52). The study underscores the efficacy of MTSI and MGIDI in 
identifying stable, high performing okra genotypes, providing a robust framework for improving genotype selection and breeding 
strategies. The combined use of phenotypic and genotypic data enhances the precision of genetic analyses, facilitating the selection 
of diverse and adaptable okra genotypes for future breeding programs.
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Introduction
Okra (Abelmoschus esculentus L. Moench), a member of 
the Malvaceae family with a chromosome number of 2n 
= 8x = 72 or 144, originated in Southeast Asia (Sutar et al. 
2013). It is widely adaptable due to its ease of cultivation, 
export potential, high monetary returns and suitability 
for regions with moderate rainfall. India ranks first in okra 
production and 12th in productivity, producing 6.37 mt from 
an area of five lakh hectares with a productivity of 11.6 t/ha 
(Anonymous 2020). Okra is a commonly used vegetable in 
culinary preparations, valued for its nutritional content. One 
of the constraints in increasing okra production is the lack 
of stability in high-yielding and widely adapted varieties or 
hybrids. Varietal adaptation to environmental fluctuations 
is crucial for stabilizing crop production. Fruit yield, being a 
complex polygenic trait, is influenced by several component 
characters that are polygenically inherited and highly 
susceptible to environmental variation; direct selection 
for yield may not be reliable. Emphasis should be placed 
on selecting yield attributes that are less influenced by the 
environment. Correlation studies provide an opportunity 
to study the magnitude and direction of the association of 

yield with its component characters and also among various 
component characters. Thus, evaluating genotypes in a 
single environment is not sufficient for the selection and 
identification of superior varieties (Shrestha et al. 2012). 
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Table 1. Genotype accessions taken in the study

S. No. Genotype code Genotype name S. No. Genotype code Genotype name

1 G1 Arka Anamika 22 G22 VRO 106

2 G2 Pusa Swani 23 G23 UAHS- 1

3 G3 Varsha Uphar 24 G24 UAHS- 2

4 G4 Red Okra 25 G25 UAHS- 3

5 G5 Green Okra 26 G26 UAHS- 4

6 G6 Green Star 27 G27 UAHS- 5

7 G7 Anekombu 28 G28 UAHS- 6

8 G8 Local 29 G29 UAHS- 7

9 G9 Red Burgandy 30 G30 UAHS- 8

10 G10 Parbhani Kranti 31 G31 UAHS- 9

11 G11 Halubende 32 G32 UAHS- 10

12 G12 Kashi Vibhuthi 33 G33 UAHS- 11

13 G13 Kashi Satadri 34 G34 UAHS- 12

14 G14 Kashi Kirathi 35 G35 UAHS- 13

15 G15 Kashi Leela 36 G36 UAHS- 14

16 G16 Kashi Mangala 37 G37 UAHS- 15

17 G17 Pusa Makhmali 38 G38 UAHS- 16

18 G18 Pusa Utkarsh 39 G39 UAHS- 17

19 G19 VRO 103 40 G40 UAHS- 18

20 G20 VRO 109 41 G41 UAHS- 19

21 G21 VRO 178 42 G42 UAHS- 20

The best strategy is to evaluate genotypes in multiple 
environments for stable yield and average performance 
(Islam et al. 2015)

Genotype × environment interaction (GEI) is a major 
factor affecting the performance of vegetable and field 
crops under different environments. Understanding GEI and 
stability in crops serves as a decision tool, particularly at the 
final stage of variety introduction, for screening breeding 
lines and recommending released varieties (Yan and Kang 
2003). By examining the phenotypic characteristics of crop 
cultivars, breeders can evaluate the adaptability and stability 
of genotypes to various environments with varying yield 
potentials. Therefore, it is necessary to understand the 
effect of the environment on genotype characters and their 
performance in specified conditions, which can be achieved 
by studying GEI along with stability analysis. In addition to 
considering GEI, breeders need to consider multiple traits 
simultaneously. Multi-trait selection indices facilitate the 
integration of several desirable attributes, allowing breeders 
to select cultivars according to their genetic superiority and 
phenotypic stability (Eberhart and Russell 1966). Recently 
proposed indexes, such as the Multi-Trait Stability Index 
(MTSI) (Olivato et al. 2019) and the Multi-Trait Genotype-

Ideotype Distance Index (MGIDI) (Olivato and Nardino 
2020), have emerged as novel tools for selecting superior 
genotypes that perform well across different environmental 
conditions with high yield stability and desirable traits.

The MTSI is a selection index that utilizes the mean 
performance and stability of the genotype for multi-trait 
selection (Authrapun et al. 2021). In this context, the current 
study proposes a framework for identifying suitable stable 
okra genotypes using MTSI and MGIDI indices. Therefore, 
the present study was conducted to identify ideal high-
yielding okra genotypes that perform well under various 
environmental conditions through a multi-factorial, multi-
trait stability analysis.

Materials and methods
A total of 42 genotypes, including advanced breeding 
lines from the Department of Genetics and Plant Breeding, 
College of Agriculture, Shivamogga, Karnataka, India, were 
used in this study (Table 1). The experiment was conducted 
at the Keladi Shivappa Nayaka University of Agricultural 
and Horticultural Sciences, Shivamogga, Karnataka, India 
during kharif 2020, rabi of 2020–21, and kharif  2022. The 
site is located at 13˚55’N latitude, 75˚34’E longitude, and an 
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elevation of 640 meters. The station experiences an average 
annual rainfall of 900 mm, with red sandy loam soil. The 
experiment was designed as a randomized complete block 
design with two replications. Seeds of each genotype were 
sown with a spacing of 60 × 45 cm in 5 m long cropping 
rows. Twelve quantitative traits, namely,  first flowering node 
(FFN), days to 50% flowering (DFF), plant height (PH), number 
of primary branches per plant (NPB), internodal length (IL), 
number of internodes (NIN), fruit length (FL), fruit diameter 
(FD), average fruit weight (AFW), number of fruits per plant 
(NOF), test weight (TW) and fruit yield per plant (FYPP) were 
assessed in this study. 

DNA extraction and PCR
About 42 genotypes were utilized for the molecular diversity 
study. Young leaves from 20 to 25 day old seedlings were 
collected, sterilized, and stored at -20°C. DNA extraction 
employed a modified cetyl trimethyl ammonium bromide 
(CTAB) method (Murray and Thompson 1980), which 
involved grinding the leaves in liquid nitrogen, incubating 
them in extraction buffer and performing multiple phases of 
Phenol ChloroformIsoamyl alcohol extraction. The resulting 
nucleic acids were precipitated with isopropanol, washed 
with ethanol and dissolved in TE buffer, followed by RNA 
removal using RNase treatment. DNA quality was assessed 
through agarose gel electrophoresis, and concentrations 
were normalized to 25 ng/μL for PCR amplification.

For PCR, a reaction mixture containing Takara Master Mix, 
primers, and genomic DNA was prepared, with optimized 
amplification conditions. The PCR products were analyzed 
on a 3% agarose gel stained with ethidium bromide and 
visualized under UV light. Primers for simple sequence 
repeat (SSR) markers were selected based on prior research, 
as detailed in (Supplementary Table S1). Gel electrophoresis 
and subsequent visualization enabled the assessment of 
DNA banding patterns, enhancing the understanding of 
genetic diversity among the okra cultivars.

Statistical analysis

Morphological diversity analysis
Pooled analysis of variance and individual analysis of 
variance (ANOVA) was performed for each environment. 
The Mahalanobis D2 statistic, introduced by Mahalanobis 
in 1936, was used to assess genetic divergence between 
different populations. This analysis was carried out using the 
data recorded on each germplasm. The ‘biotools’ package 
in R software (v 4.2) was utilized for the D2 analysis. The 
Mahalanobis generalized distance (D2) between any two 
populations is calculated using the following formula:

D2 = Σλijσiσj

Where,
D2 = Square of generalized distance
λij = Reciprocal of the common dispersal index

σi= μi1 - μi2
σj = μj1 - μj2
μ = General mean

To simplify the computational procedure, the original 
correlated unstandardized character mean (Xs) was 
transformed into standardized uncorrelated variables (Ys). 
The D2 values were then obtained as the corresponding 
uncorrelated (Ys) values of any two uncorrelated germplasm 
(Rao 1952). Using all D2 values, the genotypes were grouped 
into clusters using Tocher’s method, as described by Rao 
(1952).

Marker diversity analysis
To measure the informativeness of the markers, the major 
allele frequency and the polymorphism information 
content (PIC) for each SSR marker were determined using 
PowerMarker Version 3.25 software. The PIC was calculated 
using the formula given by Botstein et al. (1980):

Where, n = number of alleles pi and pj = allele frequency in 
population i and j, respectively 

A binary data matrix (scored as ‘1’ and ‘0’) of SSR markers 
from 30 genotypes was subjected to cluster analysis. A 
dendrogram was constructed using the unweighted pair 
group method with arithmetic mean (UPGMA) based on 
similarity matrices calculated using the simple matching 
(SM) coefficient (Nei and Li, 1979). 

Comparison of molecular and morphological 
diversity
To test the correlation between the morphological and 
molecular data, the two parallel matrices were compared 
using a Mantel test with 9999 permutations (Manco et 
al. 2020). The comparison of the two dendrograms was 
performed using a tanglegram plot. This analysis was 
conducted in R using the ‘dendextend’ (Galili 2015) and 
‘NbClust’ (Charrad et al. 2014) packages.

Correlation coefficient analysis
The correlation coefficient among all possible character 
combinations at the phenotypic (rp) level was estimated 
using the formula provided by Al-Jibouri et al. (1958). This 
analysis was performed using the ‘correlation’ package in 
R (v 4.1.3).

Where,
Covxy (p) = Phenotypic covariance between x and y
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Vx (p) = Phenotypic variance of character ‘x’
Vy (p) = Phenotypic variance of character ‘y’

The test of significance for the association between 
characters was done by comparing table ‘r’ values at n-2 
error degrees of freedom for phenotypic and genotypic 
correlations with estimated values, respectively.

Multi-trait stability index
Stability analysis among genotypes was conducted using 
the ‘metan’ package developed by Olivoto and Lucio (2020). 
The MTSI/MGIDI index rescaled traits to a 0–100 value 
range, facilitating the definition of an ideotype. Most traits 
were assigned increased values, reflecting quantitative 
morphological traits of the okra crop correlated with yield. 
Traits like days to fifty flowering and first flowering node 
were assigned decreased values to identify genotypes with 
shorter crop cycles, potentially leading to higher fruit yield.

 WAASBi (weighted average of absolute scores based 
on SVD of BLUP-interaction effects of the ith genotype or 
environment) (Olivoto et al. 2019) is calculated by equation. 

Where the interaction principal component axis (IPCAik) 
is the score of the ith genotype (or environment) in the kth 

IPCA; and EPkis the amount of the variance explained by 
the kthIPCA.

According to the multi-trait genotype-ideological 
distance index (MGIDI) proposed by Olivoto et al. (2020). 
The following formula was used to calculate the Euclidean 
distance between the genotype score and the ideal 
genotype as the MDIGI index:

In the formula, γij represents the scores of the ith genotype in 
the jth factor (i = 1, 2,…, t; j=1, 2,…, f), where t and f represent 
the number of genotypes and factors, respectively, and γj 
represents the jth scores for the ideotype. The genotypes 
with the lower MGIDI values are closer to the ideal genotype 
than other that exhibits all the desired values for the 
measured agronomic traits. 

MTSI takes advantage of the weight between average 
performance and stability and, therefore, selects genotypes 
that are both stable and have a high performance. If the 
weights of all traits in the MTSI are completely assigned to 
the average performance, then the MTSI will become the 
MGIDI index. It should be noted that MGIDI is used to rank 
genotypes based on multiple traits but does not consider 
the stability of genotypes.

The multi-trait stability index (MTSI) (Olivoto et al. 2019) 
was computed by equation. 

Where, the MTSI is the multi-trait stability index for the ith 

genotype, Fijis the jth score of the ith genotype, and Fjis the 
jth score of ideotype. The genotype with the lowest MTSI is 
then closer to the ideotype and, therefore, presents a high 
mean performance and stability for all analyzed variables 
(Olivoto et al. 2019).

Results and discussion
The performance of agronomic traits of the genotypes is 
generally considered to be an important step in selecting 
genotypes suitable across different environments and with 
ideal agronomic traits, which can be used in future breeding 
programs to breed new and improved genotypes (Alipour 
et al. 2021). Multi-environmental testing (MET) serves as 
a tool that describes the adaptability, as well as stability, 
of genotypes across different environments (Allard and 
Bradshaw 1964). To develop a stable genotype that performs 
better under different environmental situations, the 
interaction between genotype and environment needs to 
be clearly understood. Genotype-environment interaction 
is a very complicated process involving genetic and non-
genetic factors. The genotype which outrages all the climatic 
vagaries and performs better at both congenial, as well as 
in unfavorable environments is termed as ‘stable genotype’. 
Despite the good yielding potential, if the cultivar is not 
stable, that is of no use (Kang and Pham 1991). The selected 
genotype should be amenable to crop management 
practices and soil fertility status, which serves as a precursor 
for increasing yield and yield-attributing traits of okra.

Genetic diversity present in the available germplasm 
has immense value for crop improvement. From the 
point of selecting the divergent parents for hybridization, 
the genetic distance is most important. Morphological 
markers, influenced by environmental factors, often reduce 
selection efficiency during cultivar development. In contrast, 
molecular markers are unaffected by environmental 
conditions, making them more reliable for genetic diversity 
assessment. Their determination is largely automated, 
minimizing human error. However, the use of molecular 
markers in okra is limited due to a scarcity of polymorphic 
markers and established genetic maps. Additionally, okra’s 
allopolyploid nature and large chromosome number (2n = 
56–196) add to the complexity (Lata et al. 2021).

The polymorphism level among okra cultivars was 
assessed by calculating the allele number, major allele 
frequency, and Polymorphism Information Content (PIC) 
values for each of the 45 SSR markers evaluated. Out of 
these, 35 markers were found to be polymorphic. Across 
42 genotypes, a total of 78 alleles were detected at the loci 
of 35 microsatellite markers, highlighting the robustness of 
microsatellites in revealing polymorphism (Table 2). Eight 
markers (AeKVR-117, AeKVR-137, AeKVR-176, AeKVR-182, 
AeKVR-192, AeKVR-194, AVRDC OKRA 39, and Okra-137) 
produced three alleles each, while 27 markers produced 
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two alleles each. The major allele frequency ranged from 
0.53 (AeKVR-182) to 0.93 (AeKVR-153), with a mean of 0.71.

High PIC values indicate more informative markers, 
whereas lower values suggest closer genetic relationships 
among the genotypes studied. PIC values, reflecting allele 
diversity and frequency, varied from 0.00 to 0.93, with an 
average of 0.69. The highest PIC value of 0.93 was recorded 
for marker AeKVR-153, followed by 0.91 for markers 
AeKVR-137 and AVRDC OKRA 70. These high PIC values 
demonstrate that these markers are particularly effective 
in differentiating okra cultivars, indicating greater diversity 
among the genotypes. These results align with the findings 
of Kumar et al. (2016) and Ravishankar et al. (2018), who 
observed similar polymorphism and PIC values among 
different okra genotypes. The ANOVA was computed for 
each environment, employing a randomized complete block 
design. Results showed statistical significance (p ≤ 0.05) 
for all twelve traits across the studied environments. The 
dendrograms representing morphological and molecular 
diversity in okra genotypes, as illustrated in the tangle-gram 
(Fig. 1), reveal distinct clustering patterns that highlight the 
genetic variability and relationships among the studied 
genotypes. The morphological dendrogram on the left side 
and the molecular dendrogram on the right side both exhibit 
unique groupings that provide insights into the genetic 
diversity and stability of okra genotypes.

In the morphological dendrogram, genotypes such as 
VRO 109, UAHS-3, Varsha Upahar, UAHS-19, UAHS-10, UAHS-
20, Halubende, UAHS-4, UAHS-11, UAHS-9, Kashi Vibhuti, 
UAHS-18, Kashi Kiranti, UAHS-8, UAHS-5 andUAHS-6 are 
clustered together, indicating their similarity based on 
phenotypic traits (Fig. 1), suggesting that these genotypes 
share common morphological characteristics. Additionally, 
genotypes like Pusa swani and Anekombu formed another 
distinct cluster, further supporting their phenotypic 
resemblance. Whereas, Local and Green stars formed solitary 
clusters. On the molecular side, the dendrogram reveals a 
different clustering pattern, reflecting the genetic diversity 
at the DNA level. For instance, the genotypes VRO 178, VRO 
103, UAHS-5, UAHS-13, Kashi Satadri, UAHS-14, Green Okra, 
Pusa Swani, Parbhani Kranti, UAHS-11 and Kashi Kiranti are 
grouped together, suggesting a close genetic relationship 
that may not be evident from morphological traits alone. 
This molecular clustering provides a deeper understanding 
of the genetic makeup and can help in identifying 
genotypes with desirable traits such as disease resistance or 
stress tolerance. Other notable clusters include UAHS-2, Red 
Burgandy, UAHS-16 and UAHS-15, which indicates genetic 
similarity that could be leveraged for breeding programs 
aimed at improving genetic resilience.

A combined dendrogram based on genotypic and 
phenotypic data improves precision in genetic analyses of 

Table 2. Estimates of the number of alleles, major allele frequency and polymorphic information content (PIC) Values among 42 genotypes of okra

S. No. Marker No. of 
alleles

Major allele 
frequency

PIC S. No. Marker No. of 
alleles

Major allele 
frequency

PIC

1 AeKVR-114 2 0.90 0.81 19 AVRDC OKRA 52 2 0.73 0.61

2 AeKVR-117 3 0.63 0.60 20 AVRDC OKRA 63 2 0.80 0.32

3 AeKVR-125 2 0.56 0.57 21 AVRDC OKRA 64 2 0.73 0.86

4 AeKVR-126 2 0.63 0.76 22 AVRDC OKRA 70 2 0.76 0.91

5 AeKVR-134 2 0.67 0.79 23 AVRDC OKRA 86 2 0.83 0.23

6 AeKVR-137 3 0.80 0.91 24 AVRDC OKRA 89 2 0.70 0.82

7 AeKVR-149 2 0.63 0.75 25 Okra-12 2 0.80 0.64

8 AeKVR-153 2 0.93 0.93 26 Okra-103 2 0.73 0.73

9 AeKVR-165 2 0.76 0.59 27 Okra-104 2 0.65 0.65

10 AeKVR-176 3 0.76 0.83 28 Okra-110 2 0.78 0.82

11 AeKVR-182 3 0.53 0.86 29 Okra- 111 2 0.80 0.84

12 AeKVR-192 3 0.60 0.75 30 Okra-119 2 0.82 0.82

13 AeKVR-193 2 0.63 0.80 31 Okra-125 2 0.66 0.66

14 AeKVR-194 3 0.76 0.41 32 Okra-128 2 0.84 0.85

15 AeKVR-195 2 0.60 0.54 33 Okra-137 3 0.64 0.64

16 AVRDC OKRA 9 2 0.66 0.79 34 Okra-141 2 0.67 0.67

17 AVRDC OKRA 21 2 0.86 0.19 35 Okra-148 2 0.83 0.78

18 AVRDC OKRA 39 3 0.76 0.39 36 Average 2.22 0.71 0.69
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germplasm. The hierarchical clusters based on phenotypic 
and genotypic data revealed that the genotypes could be 
clustered into heterogeneous groups. The tangle-gram 
comparing phenotypic and genotypic clustering revealed 
that these clusters were largely independent (Fig. 1). The 
cophenetic correlation between the dendrograms (r = 
0.37) was not significant, indicating that the resemblance 
of morphological traits with SSR markers did not strongly 
correlate. The inconsistency between phenotypic and 
genotypic clusters is likely caused by environmental 
variance. Genotype × environment interaction confounds 
phenotypic performance, which reduces the correlation 
between genotype and phenotypic expression. The 
genotypes used in this study consisted of diverse types 
with different adaptations, which led to deviations from 
their genetic potential. Inconsistencies between genotype 
and phenotype expressions have been reported previously 
in okra by Massucato et al. (2019) and Nkhata et al. (2020) 
in common beans. The differential clustering of genotypes 
in the combined dendrogram can be used for a more 
informative analysis of diversity in the population.

The integration of morphological and molecular data 
through this analysis aids in the identification of stable 
genotypes that are not only phenotypically desirable but 
also genetically robust. This dual approach enhances the 
precision of breeding programs, enabling the selection of 
genotypes that are likely to perform well under varying 
environmental conditions. The insights gained from such 

analyses are pivotal for the development of improved okra 
varieties that combine high yield with stability and resilience, 
thereby contributing to sustainable agricultural practices.

The correlation matrix (Fig. 2) displays the relationships 
among twelve quantitative traits in okra, providing a 
comprehensive overview of the phenotypic associations 
between these traits. 

Significant correlations were observed among several 
traits. For instance, a strong positive correlation (r = 0.52) 
was observed between AFW and FYPP, indicating that 
genotypes with heavier fruits tend to have higher yields. 
Similarly, PH showed significant positive correlations with 
the number of internodes  (r = 0.66) and internodal length 
(r = 0.44), suggesting that taller plants generally have more 
and longer internodes. Additionally, the first flowering node 
exhibited a strong positive correlation with the number 
of primary branches per plant (r = 0.58), implying that 
early flowering genotypes tend to develop more primary 
branches. A notable negative correlation was found 
between the number of fruits and average fruit weight 
(r = -0.55), indicating that larger fruits tend to be lighter. 
Furthermore, days to 50% flowering negatively correlated 
with fruit yield per plant  (r = -0.18) and plant height (r = 
-0.12), suggesting that early flowering genotypes may 
produce lower yields. Several trait combinations exhibited 
non-significant correlations, highlighting the complex 
nature of trait interactions in okra. For example, internodal 
length and fruit diameter (r = 0.096) showed a weak and 

Fig. 1. Tanglegram of dissimilarity of 42 okra (Abelmoschus esculentus L.) accessions

Morphological Molecular
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non-significant correlation, suggesting that these traits may 
vary independently.

The correlation analysis provides crucial insights into 
the relationships among key agronomic traits in okra. The 
strong positive correlation between average fruit weight and 
fruit yield per plant underscores the importance of selecting 
genotypes with heavier fruits to enhance overall yield. This 
finding aligns with the results of similar studies in other 
crops, where fruit weight is a key determinant of yield (Kumar 
et al. 2020). The significant positive correlation between 
plant height, number of internodes, and internodal length 
suggests that taller plants with more internodes are likely 
to perform better in terms of growth and yield attributes. 
The present findings are consistent with earlier findings in 
other studies that highlighted the role of plant architecture 
in yield performance.

Negative correlations, such as between fruit diameter 
and average fruit weight, indicate potential trade-offs 
in breeding programs. Breeding for larger fruit size may 
inadvertently reduce fruit weight, affecting yield potential. 
Thus, careful consideration of these trade-offs is essential 
in developing balanced breeding strategies (Islam et al. 
2015). The non-significant correlations among certain 
traits highlight the complex genetic architecture of okra, 
suggesting that some traits may not directly influence 
each other and could be independently selected for 
improvement. 

The MTSI evaluation system has unique and easy-
to-understand characteristics. MTSI has many practical 
applications in breeding practices. For example, obtaining 
multiple agronomic traits and selection for mean 
performance and stability can be performed simultaneously 
(Evans 1993). The MGIDI index and the MTSI index use the 
same rescaling process to select genotypes. This rescaling 
program places all the agronomic traits in the range of 
0–100, which contributes to the definition of ideotype;  
thereby, all identical ideotype values for the evaluated 
agronomic traits are expressed as 100. This is only possible 
from the perspective of the selection direction required 
by the rescaling process. Future METs studies will have to 
rescale the evaluated traits by the breeders to define the 
value of the new maximum and minimum value of the 
agronomic trait after rescaling, respectively (Rocha et al. 
2018).

Table 3 presents the factor analysis performed with the 
WAASBY index (MTSI). Factors with eigenvalues greater than 
1 were retained, resulting in four factors. The 12 traits under 
study were grouped into these four factors (FA). The first 
four-factor components (FA) had eigenvalues greater than 
one and accounted for 64.60% of the total variance among 
the traits. FA1 clustered four traits, including PH, NIN, NOF, 
and FFN, while FA2 grouped DFF, NPB, and FD traits (Table 
4). The MTSI index analysis assigned ranks to all 42 studied 
genotypes based on the desired value of the trait (Fig.3). A 

Fig. 2. The correlation matrix among twelve quantitative traits in okra
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selection pressure of approximately 15% was used to identify 
the top six genotypes, which included G7 (Anekombu), G33 
(UAHS-11), G32 (UAHS-10), G41 (UAHS-19), G26 (UAHS-4), and 
G30 (UAHS-8), and these were utilized to determine selection 
differentials (SDs). The selection differential is the difference 
in mean phenotype between selected individuals and the 
population mean, quantifying the change in a population’s 
mean trait value between pre and post-selection.

The MTSI index provided the desired selection 
differential for 7 (PH, NOF, FFN AFW, FL, FYPP and IL) out 
of the 12 studied traits with a success frequency of 58% in 
selecting desired traits. The selection differential percent 
for traits ranged from -7.74% (NIN) to 16.4% (FL). Traits with 
high heritability included the number of internodes per 
plant (0.99), fruit length (0.98), and the number of fruits per 
plant (0.98) (Table 4).

The role of each factor in the MTSI index was used to 
identify the strengths and weaknesses of genotypes. The 
less involvement of a factor (FA), the closer the characters 
within that factor are to the ideotype. Fig. 4 depicts the 
strengths and weaknesses of the stable accessions identified 
across three consecutive growing seasons. Factors that 
contributed the most were placed toward the center, while 
those that contributed less were drawn near the plot edge. 
The strengths and weaknesses of accessions showed that 
the six selected genotypes performed better for the majority 
of traits in FA3, such as AFW, FL, and FYPP. The weakness of 
G3 (Anekombu), however, was related to FA2 traits, such as 
DFF, NPB, and FD. Factors FA1 and FA2 showed weaknesses 
in most selected genotypes. 

The factor loading analysis revealed that the MGIDI 

explained 77.30% of the total variation in the traits. We 
retained the top five main components (Table 5). In this 
study, the 12 evaluated traits were divided into five factors. 
PH, NIN, and NOF belonged to FA1; FA2 characteristics 
included FFN, DFF, and NPB; FA3 included traits FD, AFW, and 
FYPP; FA4 comprised fruit length, and the remaining three 
traits IL and TW were classified as FA5 (Table 6).

The selection pressure of approximately 15% identified 
the top genotypes (Fig. 5). The MGIDI index provided the 
desired selection differential (SD) for 7 out of 12 studied 
traits with a success frequency of 58% in selecting desired 
traits. The selection differential (SD) percent for traits 
ranged from -32.90% (NPB) to 17.00% (FFN). Traits with 
high heritability included FL (0.95) and FD (0.94) (Table 6). 
Assuming a selection intensity of 15%, different genotypes 
can be screened. Through the MGIDI index, genotypes 
G33(UAHS-11), G41(UAHS-19), G32(UAHS-10), G27(UAHS-5), 
G30(UAHS-8) and G3(Varsha Uphar) were very close to 
the red cutting point, indicating that these genotypes are 
expected to have an excellent phenotype (Fig. 5).

Fig. 6 depicts the genotype’s strengths and weaknesses. 
Factor FA3 showed greater strength towards the most 
selected genotypes. FA5 and FA4 groups were found less in 
selecting genotypes. However, FA1’s contribution was only 
for a few selected genotypes, such as Varsha Uphar and 
UAHS-10. Comparing the best linear unbiased predictors 
(BLUPs) of fruit yield showed that Green Star, UAHS-11, Kashi 
Kiranthi, Varsha Uphar, and UAHS-18 had higher predictions 
than the overall grain yield and, therefore, were superior 
genotypes. Kashi Leela had the lowest predicted grain 
yield (Fig. 7).

Table 3. Factor loadings explained variance and communalities resulted after superposition by factor analysis (MTSI)

Variable FA1 FA2 FA3 FA4 Communality Uniqueness

FFN 0.15 -0.10 -0.05 0.77 0.63 0.37

DFF 0.29 -0.68 0.16 0.03 0.57 0.43

PH -0.72 0.28 0.19 0.14 0.66 0.34

NPB -0.11 -0.68 -0.08 -0.29 0.56 0.44

IL -0.20 0.79 0.19 -0.08 0.71 0.28

NIN -0.11 0.11 0.72 -0.06 0.55 0.44

FL 0.06 0.26 0.68 -0.15 0.56 0.44

FD 0.67 0.01 -0.05 0.37 0.63 0.37

AFW 0.84 -0.14 0.32 0.11 0.85 0.15

NOF -0.86 0.04 0.17 0.11 0.78 0.22

TW 0.12 -0.25 0.07 -0.79 0.71 0.29

FYPP -0.05 -0.24 0.70 0.07 0.55 0.45

Eigenvalues 3.06 1.80 1.74 1.16

Variance (%) 25.50 15.00 14.50 9.67

Accumulated (%) 25.50 40.50 55.00 64.60
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Table 4. Factors linked to correlated traits, selection differential, heritability and indicators (MTSI)

Variables Factor Xo Xs SD SD Percent h2 Indicators

PH FA1 122.00 130.00 8.10 6.65 0.89 increase

NIN FA1 1.66 1.54 -0.13 -7.74 0.99 increase

NOF FA1 20.90 22.50 1.62 7.77 0.98 increase

FFN FA1 18.10 18.40 0.31 1.71 0.97 decrease

DFF FA2 47.10 47.50 0.39 0.84 0.89 decrease

NPB FA2 1.52 1.53 0.01 0.52 0.96 increase

FD FA2 7.39 7.00 -0.39 -5.33 0.96 increase

AFW FA3 16.80 18.10 1.33 7.95 0.93 increase

FL FA3 16.70 19.40 2.74 16.4 0.98 increase

FYPP FA3 366.00 391.00 24.90 6.80 0.95 increase

IL FA4 1.63 1.83 0.21 12.7 0.95 increase

TW FA4 6.42 5.98 -0.44 -6.83 0.95 increase

Fig. 3. Ranking of genotypes based on MTSI index

Fig. 4. Strength and weakness view of stable genotypes identified on 
the computed MTSI index

Fig. 5. Ranking of genotypes based on MGIDI index

Fig. 6. Strength and weakness view of stable genotypes identified on 
the computed MGIDI index
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Table 5. Factor loadings explained variance and communalities resulted after superposition by factor analysis (MGIDI)

Variable FA1 FA2 FA3 FA4 FA5 Communality Uniqueness

FFN 0.03 -0.9 -0.06 0.08 0.00 0.81 0.19

DFF -0.03 -0.57 -0.16 0.26 -0.45 0.62 0.38

PH -0.89 -0.25 -0.05 -0.02 -0.02 0.87 0.13

NPB 0.05 0.87 -0.13 0.00 0.13 0.80 0.20

IL 0.01 0.03 -0.12 0.10 -0.81 0.68 0.32

NIN -0.79 0.31 -0.07 0.16 -0.15 0.77 0.23

FL -0.07 -0.14 -0.08 0.90 -0.05 0.85 0.15

FD 0.12 -0.08 0.85 -0.35 -0.01 0.86 0.14

AFW 0.18 0.07 0.94 0.14 0.11 0.96 0.04

NOF -0.66 -0.06 -0.58 0.10 -0.02 0.79 0.21

TW 0.13 0.22 -0.04 0.12 0.65 0.51 0.49

FYPP -0.37 -0.04 0.58 0.51 0.14 0.76 0.24

Eigenvalues 3.03 2.28 1.80 1.12 1.05

Variance (%) 25.20 19.00 15.00 9.37 8.76

Accumulated 
(%)

25.20 44.20 59.20 68.50 77.30

Table 6. Factors linked to correlated traits, selection differential, heritability and indicators (MGIDI)

Variables Factor Xo Xs SD SD Percent h2 Indicators

PH FA1 122.00 128.00 5.80 4.76 0.42 increase

NIN FA1 16.80 17.90 1.16 6.94 0.63 increase

NOF FA1 18.10 18.30 0.27 1.52 0.92 increase

FFN FA2 1.63 1.90 0.27 17.00 0.88 decrease

DFF FA2 47.10 47.4 0.25 0.52 0.68 decrease

NPB FA2 1.52 1.02 -0.50 -32.9 0.89 increase

FD FA3 1.66 1.57 -0.09 -5.49 0.94 increase

AFW FA3 20.90 22.30 1.44 6.91 0.82 increase

FYPP FA3 366.00 395.00 29.10 7.97 0.86 increase

FL FA4 16.70 19.60 2.91 17.4 0.95 increase

IL FA5 7.39 7.46 0.07 0.93 0.62 increase

TW FA5 6.42 6.17 -0.25 -3.82 0.93 increase

The genotypes above and below the BLUPs are indicated 
by blue and red circles, respectively. Horizontal error bars 
present 95% confidence intervals of BLUPs in a two-tailed 
test.

The study highlights the importance of multi-trait 
selection indices, specifically the WAASBY index (MTSI) and 
MGIDI index, in identifying stable and high-yielding okra 
genotypes across different seasons. The MTSI index proved 
effective in identifying genotypes with desirable traits and 
high heritability, such as the number of internodes per plant, 
fruit length, and the number of fruits per plant. Similarly, 
the MGIDI index was successful in selecting genotypes that 
exhibit superior phenotypic traits, demonstrating the utility 

of these indices in breeding programs (Rocha et al. 2018). 
These novel methods are currently being used in breeding 
programms to identify stable genotypes for yield and 
other desirable traits in various crops such as barley (Pour-
Aboughadareh et al. 2021), cassava (Koundinya et al.2021), 
sweet corn (Patel et al. 2023), and forage sorghum (Behera 
et al. (2024) and other crops for different environments.

Factor analysis played a crucial role in understanding 
the clustering of traits and their contributions to the 
overall performance of the genotypes. By retaining factors 
with eigenvalues greater than 1, we accounted for a 
significant portion of the total variance, ensuring a robust 
selection process (Evans 1993). The grouping of traits into 
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Fig. 7. Best linear unbiased prediction (BLUPs) of fruit yield per plant 
for 42 okra genotypes

factors allowed for a more targeted approach in selecting 
genotypes with the desired characteristics.

The selection differentials (SDs) and heritability 
estimates provided insights into the genetic potential and 
stability of the selected genotypes. High heritability values 
for traits like the number of internodes per plant and fruit 
length indicate that genetic factors largely govern these 
traits and can be effectively incorporated into breeding 
programs for developing superior genotypes (Alipour et al. 
2021). The strengths and weaknesses analysis of the selected 
genotypes further emphasized the importance of multi-trait 
selection indices. By identifying the traits that contribute 
most to the overall performance, breeders can focus on 
improving these traits in future breeding efforts. The 
stability and adaptability of the selected genotypes across 
different growing seasons underscore their potential for use 
in diverse environmental conditions (Kang and Pham 1991).
The use of multi-trait selection indices, such as the MTSI 
and MGIDI indices, in combination with factor analysis and 
selection differentials and correlation studies provides a 
comprehensive approach for identifying and developing 

stable and high-yielding okra genotypes (Olivato et al. 
2019; Yan and Kang 2003). These methods enable breeders 
to select genotypes that not only perform well in specific 
environments but also exhibit stability and adaptability 
across different conditions, thereby contributing to 
the development of superior okra varieties (Allard and 
Bradshaw, 1964). Our selection based on the multi traits 
may assemble genotypes with superior adaptability across 
prevailing weather conditions of immense significance for 
hybridization programs. The genotypes selected from the 
present research are best utilized in a breeding program for 
the development of superior genotypes to perform better 
in diverse environmental conditions. 

Supplimentary material
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be accessed at www.isgpbb.org
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Supplementary Table S1. List of SSR primers and their sequences

S. No. Primer name Primer Sequence Reference

1 AeKVR-106 F:TAGCGAAGAAATCACAGTTCACA
R:CCCAAAACGGGTAACGTAAAG Ravishankar et al. (2018)

2 AeKVR-114 F:TGAGAAGCGATGTTCTAGCGATT
R:ATGAGGAAATAACTGACCCAGC Ravishankar et al. (2018)

3 AeKVR-117 F: TACGTTCCGTACCTTACTTCGG
R:GTTACGACGAGGTTTACCAAGG Ravishankar et al. (2018)

4 AeKVR-125 F:TCGTATCGTTGAAGAAGGAAACA
R:TGAATCGTCCGTGATATAAACC Ravishankar et al. (2018)

5 AeKVR-126 F:GTACGGATACTCAAACGAAGGC
R:GTAGGTGCAGTGTTGTTACCGA Ravishankar et al. (2018)

6 AeKVR-131 F:TATTCATAAACAGGGATGAGCAG
R:TCTTCAGTCCGATACAGCACTT Ravishankar et al. (2018)

7 AeKVR-134 F:TCTTATCGACTGATGTTGAGGCA
R:TGTGGGAAACTATAACCGGAAC Ravishankar et al. (2018)

8 AeKVR-137 F:TAAAGGGTATAATGCAGCCATGT
R:TCGTGGTTAGTTTCGTTTTCCT Ravishankar et al. (2018)

9 AeKVR-149 F:TCACCAGGCTCGACCACTC
R:GTACGTCGGGTACGACCG Ravishankar et al. (2018)

10 AeKVR-153 F:TGGAGTGTGCTGCCAAGTTTAT
R:TTGTTTATGCTGTGATGCTGAC Ravishankar et al. (2018)

11 AeKVR-165 F:TAGCAAAAGCGATGATTGTCTG
R:CCCCTAAACCCTAATCCTGACT Ravishankar et al. (2018)

12 AeKVR-176 F:TCCGTTTTATTTCGACCGTTACC
R:TAACCGAACCCGAACCGTA Ravishankar et al. (2018)

13 AeKVR-182 F:TAAAGCGAGGTGGTCTACATGAC
R:ATTGGGTGAAAGACAGAAAGGA Ravishankar et al. (2018)

14 AeKVR-183 F:TGGTTTAGGGTTTACCGACTACG
R:TAAGTTCGGGTTTAGGGTACGA Ravishankar et al. (2018)

15 AeKVR-187 F:TCCGAGATTCAAGCGGATTATAG
R:ACGACCACGCAACCGTAT Ravishankar et al. (2018)

16 AeKVR-192 F:TCGTGACCGTGGACTCGTAGGTA
R:ACGACCGACCGACCGAAC Ravishankar et al. (2018)

17 AeKVR-193 F:TAACGCAAACTGAACTCTCGTTA
R:ACCTAACCCTAACCCTAAACCG Ravishankar et al. (2018)

18 AeKVR-194 F:TCGAACCCCTGAACTTGGTATT
R:CACCACCGTAATAACCTAACCC Ravishankar et al. (2018)

19 AeKVR-195 F:TCGTAACCCGTATAATGCAACAG
R:AACGTAACCTAACCCTAAACCCT Ravishankar et al. (2018)

20 AVRDC OKRA 1 F: ATGGAGTGATTTTTGTGGAG
R: GACCCGAACTCACGTTACTA Ouedraogo et al. (2018)

21 AVRDC OKRA 9 F: ACCTTGAACACCAGGTACAG
R: TTGCTCTTATGAAGCAGTGA Ouedraogo et al. (2018)

22 AVRDC OKRA 21 F: TCATGTCTTTCCACTCAACA
R: CCAAACAAAATATGCCTCTC Ouedraogo et al. (2018)

23 AVRDC OKRA 28 F: CCTCTTCATCCATCTTTTCA
R: GGAAGATGCTGTGAAGGTAG Ouedraogo et al. (2018)

24 AVRDC OKRA 39 F: TGAGGTGATGATGTGAGAGA
R: TTGTAGATGAGGTTTGAACG Ouedraogo et al. (2018)

(i)
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25 AVRDC OKRA 52 F: AACACATCCTCATCCTCATC
R: ACCGGAAGCTATTTACATGA Ouedraogo et al. (2018)

26 AVRDC OKRA 57 F: CGAGGAGACCATGGAAGAAG 
R: CGAGGAGACCATGGAAGAAG Ouedraogo et al. (2018)

27 AVRDC OKRA 63 F: GTGTTTGAAAGGGACTGTGT
R: CTTCATCAAAACCATGCAG Ouedraogo et al. (2018)

28 AVRDC OKRA 64 F: AAGGAGGAGAAAGAGAAGGA
R: ATTTACTTGAGCAGCAGCAG Ouedraogo et al. (2018)

29 AVRDC OKRA 70 F: GTAGCTGAACCCTTTGCTTA
R: CTATCATGGCGGATTCTTTA Ouedraogo et al. (2018)

30 AVRDC OKRA 78 F: CTCCGACAATTCAAGAAAAG
R: CACCCAATCAAGCTATGTTA Ouedraogo et al. (2018)

31 AVRDC OKRA 86 F: ATGCAAACAAGCTAGTGGAT
R: ATTCTCTTCAGGGTTTCCTC Ouedraogo et al. (2018)

32 AVRDC OKRA 89 F: TTTGAGTTCTTTCGTCCACT
R: GTATTTGGACATGGCGTTAT Ouedraogo et al. (2018)

33 Okra-12 F: AATGAAGTTGGAGTCGACAG
R: CAATACTCGTTGTTGTGGTG Kumar et al. (2016)

34 Okra-103 F: GAATTCGATTCCAATACAGG
R: TCGTCGTCTTCATTTCTCTT Kumar et al. (2016)

35 Okra-104 F: CGGTAAATCTTGTCTCTTGC
R: TATAGGAAAACCCCCAAGAT Kumar et al. (2016)

36 Okra-110 F: GGCAACAACAGTTCTCCTT
R: AATTGGGGTTAGTGACGATA Kumar et al. (2016)

37 Okra- 111 F: CATTTTAAGGAGCGAGTGTC
R: CTCTTCCTCAACAAAACCAG Kumar et al. (2016)

38 Okra-119 F: GCAGCGGTAGAAATAAATGT
R: GGAGGGTTTAGGTATGGTTT Kumar et al. (2016)

39 Okra 121 F: CTAAATGCAAACTCGAACCT
R: TAATCTATGCCTGAACCGTC Kumar et al. (2016)

40 Okra-125 F: CCCCTTCCTCTAGATCTCAT
R: GACGGTGGAGATTGAACTT Kumar et al. (2016)

41 Okra-128 F: GAACTTCTGTGCGGTATGAT
R: ACCGTTATTTTCTGCCTCTT Kumar et al. (2016)

42 Okra 135 F: GTGATTATGGTTGCCTGAAT
R: CCCACTGACAGCTTATTGAA Kumar et al. (2016)

43 Okra-137 F: GAGAGAGATTGCTTCGACTG
R: TAAACTTTAAACTCAGCGGC Kumar et al. (2016)

44 Okra-141 F: TATCCCGATACTTTCTCCAA
R: TTAGCCTCTAAGGGGAAAAG Kumar et al. (2016)

45 Okra-148 F: TGCTTATTCATGCTGACCTA
R: AGCACTTGATATCCAAGGAA Kumar et al. (2016)

(ii)


