
Abstract
Pyruvate is the primary respiratory substrate used to provide energy for growth and development in plants. The role of genetic variants 
of pyruvate pathway genes with yield and its attributing traits in rice is not properly understood. In this study, association of sixteen yield 
traits with SNPs and In/Dels of nine pyruvate metabolism pathway genes (Os01g0649100, Os01g0743500, Os04g0671700, Os05g0186300, 
Os06g0246500, Os07g0630800, Os10g0159800, Os11g0210300 and Os11g0216000) were analyzed using the mixed linear models with 
principal component analysis (MLM+PCA) based population correction approach. The majority of the traits were found to follow a normal 
distribution pattern. Besides, MLM+PCA analysis showed a significant association of five markers with six different yield-related traits 
and the proportion of phenotypic variation explained ranged from 3.56 to 4.56%. Furthermore, the pyruvate dehydrogenase E1 alpha 
subunit (Os06g0246500) gene (Chr06:7602782) showed the highest mean percent difference (19.36%) for plant height. Moreover, most 
of the IRRI elite lines possessed favorable alleles for plant height (74.55%) and flag leaf area (79.28%) and in contrast, popular varieties 
like Swarna have inferior alleles for the yield trait-associated SNPs. Thus, genetic variation in the pyruvate pathway genes associated 
with yield-related traits could be exploited in rice improvement programs. 
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Introduction
Pyruvate is an intermediary that links respiration and 
photosynthesis and also acts as a center for the mutual 
conversion of sugars, lipids, and amino acids. It serves as 
the main respiratory substrate for the synthesis of energy 
necessary for plant growth and development (Le and Millar 
2023). It also acts as the base for many additional pathways. 
For instance, it can conduct a decarboxylation reaction to 
make acetyl-CoA in an aerobic environment and produce 
ethanol and lactic acid. In addition to the tricarboxylic 
acid cycle, acetyl-CoA also contributes to the synthesis 
of fatty acids and other metabolites (Li et al. 2021). The 
enzyme Pyruvate Kinase (PK) promotes the final phase of 
glycolysis, producing adenosine triphosphate (ATP) and 
pyruvate by irreversibly converting the phosphate group 
of phosphoenolpyruvate (PEP) to adenosine diphosphate 
(ADP) (Yang et al. 2022a). 

For one-third of the world’s population, rice (Oryza 
sativa L.) is the most adaptable staple food, and Asia 
produces about 90% of the world’s rice (Hasan-Ud-Daula 
and Sarker 2020). In the Asian diet, rice continues to be the 
main source of protein, fiber, and nutrients. Because of the 
rising demand for rice and to cope with climate change, it is 

essential to create exceptional genotypes that can flourish in 
a wide range of environments without reducing yield. The 
contribution of genes to the growing environment along 
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with the degree and types of genotypic variability, show an 
impact on the complicated trait of grain yield (Faysal et al. 
2022). Moreover, it is also associated with other agronomic 
characteristics like plant height, panicle length, tiller per 
plant, and grains per panicle directly or indirectly (Beena 
et al. 2021). To create a preference index, plant breeders 
should focus on selecting combinations of desirable traits 
to provide each with an economic benefit based on grain 
yield (Singh et al. 2023).

According to recent research on Arabidopsis, the 
pyruvate pathway enzymes play a crucial role in controlling 
aerobic growth (Ventura et al. 2020). Particularly, it was 
discovered that the pyruvate decarboxylase and alcohol 
dehydrogenase growth penalties were larger in mutant 
Arabidopsis plants grown in aerobic situations. This 
demonstrates the pyruvate pathway gene’s broader 
function in controlling plant growth and development. In 
sugarcane, pyruvate kinase (Sspon02G0043670-1B) shows a 
positive association with growth and development as well 
as a significant contribution to the regulation of the crop’s 
ability to withstand drought (Yang et al. 2022b). In rice, the 
pyruvate kinase OsPK1 plays a crucial role in controlling 
sugar transport and monosaccharide metabolism. Reduced 
pyruvate content as a consequence of lower cytosolic PK 
(PKc) expression in the mutant ospk1 caused dwarf plants 
and panicle enclosure (Zhang et al. 2012). Similarly, OsPK2 
controls rice grain filling, complex granule formation, and 
endosperm starch synthesis (Cai et al. 2018). Besides, rice 
grain filling and the buildup of storage chemicals were 
negatively impacted by the drastically reduced expression 
of OsPK3 and OsPK4 in leaves and endosperm (Hu et al. 
2020). Additionally, disruption of OsPK3, OsPK5, OsPK7, 
OsPK8, and OsPK10 and OsPK4, OsPK5, OsPK6 and OsPK10 
significantly reduced the seed setting rate and test weight 
(Dong et al. 2022). Further, over-expression of the pyruvate 
carboxylase gene enhanced the photosynthesis rate and 
abiotic stress tolerance in mulberry (Sarkar et al. 2024), and 

it was proposed that regulating the carbon gain and net loss 
involving genes in the pyruvate pathway would enhance 
the crop yield (Karthick et al. 2024). However, the genetic 
diversity and trait association of pyruvate pathway genes 
for yield related traits is not understood properly. Thus, the 
present study used the 3k rice panels and attempted to 
associate the genetic variants of the major pyruvate pathway 
genes, which were up-regulated during drought stress with 
yield-related traits in rice.

Materials and methods

Plant materials
The genotypes used in the present investigation comprised 
of 339 lines of 3k-MCP (Mini Core Panel) of rice received 
from IRRI-SA Hub, ICRISAT Campus, Hyderabad, India. 
The experiment was conducted in Kharif 2022 using an 
augmented randomized block design in three blocks with 
five checks (Vandana, IR64, MTU1010, Swarna and BPT5204) 
on the experimental field of the Crop Improvement Division, 
ICAR-National Rice Research Institute (NRRI), Cuttack. The 
checks were repeated three times. The crop was grown 
using the suggested agronomic practices and harvested in 
December 2022. Three plants at random from each genotype 
were chosen to take observations on the following traits: 
plant height (cm), panicle length (cm), number of panicles 
per plant (nos.), flag leaf length (cm), flag leaf width (cm), 
flag leaf area (cm2), number of total tillers per plant (nos.), 
number of filled grains per panicle (nos.), number of chaffy 
grains per panicle (nos.), number of total grains per panicle 
(nos.), spikelet fertility (%), biological yield per plant (g), seed 
yield per plant (g), harvest index (%) and 100 seed weight 
(g). Additionally, the number of days to 50% flowering was 
also recorded. Leaf area was calculated using the formula, 
Leaf area = Leaf length × Breadth × 0.71 (Yoshida et al. 1976). 
Similarly, the harvest index was calculated according to the 
formula Harvest index (%) = (Grain yield/ Biological yield) × 
100 (Donald, 1962) and spikelet fertility was calculated using 
the formula Spikelet fertility (%) = (Number of filled grains/
Number of total grains) × 100 (Virmani et al. 1997).

Statistics analysis
Data compilation, calculation of mean, and analysis of 
descriptive statistics were performed using Microsoft 
Excel 2013. The mean value for all the characters in three 
replications of each genotype was subjected to a two-way 
analysis of variance (ANOVA) following the method 
suggested by Singh and Chaudhury (1985). The distribution 
of the trait values was analyzed in R-studio (version R 4.2.2) 
using the ggplot2 package.  

Association analysis
Using the rice SNP-Seek database (https://snp-seek.irri.
org/), 1566 SNP markers for nine genes of the pyruvate 
metabolism pathway (Table 1) were retrieved for 334 

Fig. 1. Metabolic pathway of pyruvate-related genes
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genotypes (excluding checks). The heterozygous alleles 
were considered missing alleles, and genotype data were 
filtered for the rare alleles (frequency = 0.05) (Breseghello 
and Sorrels 2006), which made a working data set of 471 
SNP sites. Principal Component Analysis (PCA) and kinship 
matrix (Centered_IBS method) were obtained from TASSEL 
(version 5) software (Bradbury et al. 2007). TASSEL was also 
used to identify SNP and phenotypic trait associations by 
generating a mixed linear model (MLM) and the significant 
SNPs were identified using the Manhattan plot (Wang et al. 
2016). Significant marker-trait associations were determined 
based on a threshold of LOD score of more than 2.5 and p 
≤ 0.05. Z-test at 5% and 1% levels of significance were used 
to check the significance of mean differences for different 
traits between the alternate alleles (Sprinthall 2011). The 
proportion of favorable alleles in the IRRI elite lines and 
popular rice varieties or genotypes has been studied using 
the SNP seek database (https://snp-seek.irri.org/).

Results and discussion

ANOVA and descriptive statistics
The two-way ANOVA indicated the existence of a highly 
significant variation among traits, and genotypes and also 
in trait × genotype interaction (p = 0) (Table 2) and also high 
genetic variability for all the traits studied. This indicates 
that there is ample scope for the selection of promising 
genotypes from the present diverse genotypes for yield-
related traits as previously reported by Saharia et al. (2024). 
Besides, skewness, a third-degree statistic, was negligible, 

indicating the symmetric distribution of phenotypes and 
kurtosis, a fourth-degree statistic was platykurtic for all the 
traits (Table 3). Therefore, traits are governed by quantitative 
inheritance involving minor genes with additive effects 
(Anilkumar et al. 2023).

Frequency distribution of various yield-related traits  
The frequency distribution pattern of different yield-related 
traits is depicted in Fig. 2. Out of 339 genotypes, most of the 
genotypes showed 50% flowering in 90 to 110 days and only 
nine genotypes flowered early, that is, ≤ 70 days. Further, 
the majority of genotypes have plant heights between 120 
and 140 cm except 37 showed lesser height. Further, six 
genotypes possessed panicles longer than 28 cm and the 
mean length was 22.36 cm. Similar to this, two genotypes 
had flag leaves that are extremely short (15.74 and 16.44 cm 
long), and two genotypes had leaves that are extremely long 
(43 and 45 cm long). Flag leaf area varied from 20 to 38 cm2 
in 76.18% of genotypes in the association panel, showing 
a fairly symmetrical distribution. While the majority of the 
genotypes (247 nos.) showed a tillering capacity of 7 to 14, 
eight of them showed a strong tillering capacity of more 
than 17. Similarly, only four genotypes showed a stronger 
grain-filling ability of more than 180 filled grains per panicle. 
Besides, more than 200 total grains per panicle were seen 
in three genotypes and in 56.47% of genotypes, spikelet 
fertility was greater than 80%. In 80 genotypes, less than 
50 g of biological yield per plant was observed and a total 
of 47 genotypes showed more seed yield per plant than 25 
g, with a maximum yield of 60.47 g. The harvest indexes 
ranged from 15 to 28%, but remarkably, five genotypes 
showed harvest indices above 50%. Hundred seed weight 
was well distributed in the panel ranging from 2.00 to 3.00 
g in 232 genotypes. The present finding is supported by 
the recent report of a high range of frequency distribution 
for yield-related traits in rice (Ashfaq et al. 2023). Besides, a 
wide phenotypic variation in the association panel suggests 
there is the potential for novel donors to manipulate traits 
through breeding (Kakar et al. 2021).

Marker-trait association analysis 
Using association analysis through the MLM approach 
and 471 SNP genetic variations for the targeted genes, six 
significant marker trait associations (MTAs) were identified 
(Table 4). 

Table 1. List of genes involved in the pyruvate metabolism pathway

Gene Common name

Os01g0649100 Mitochondrial malate dehydrogenase

Os01g0743500 Cytosolic NADP malic enzyme 3

Os04g0671700 DJ-1/PfpI domain containing protein C, DJ-1 
protein C

Os05g0186300 Cytosolic NADP malic enzyme 2

Os06g0246500 Pyruvate dehydrogenase E1 alpha subunit

Os07g0630800 Malate dehydrogenase 7.1

Os10g0159800 Alcohol dehydrogenase superfamily, zinc-
containing protein

Os11g0210300 Alcohol dehydrogenase 1

Os11g0216000 Pyruvate kinase 5

Table 2. ANOVA of yield related traits for selected genotypes of 3k rice panels (including checks)

Source of Variation Sum of square Degree of freedom Mean sum of square F-value p-value F critical

Traits 15140156 10 1514016 13814.09 0 1.831965

Genotypes 590840.9 339 1742.894 15.9024 0 1.133043

Trait x Genotype Interaction 2175360 3390 641.6993 5.854952 0 1.049081

Within groups 819803.5 7480 109.5994

Total 18726161 11219        
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Table 3. Descriptive statistics of yield related traits for selected genotypes of 3k rice panels (including checks)

Traits DFF PH PL PP FLL FLW FLA TTP FGP CGP TGP SF BYP SYP HI HSW

Mean 97.90 117.66 22.36 9.06 29.43 1.35 28.49 10.32 81.02 19.74 100.76 80.07 75.88 17.22 24.07 2.56

Range 68.00 150.40 15.57 21.00 30.03 1.60 45.39 22.33 188.67 56.00 213.00 48.12 179.26 58.58 55.43 2.8

Minimum 57.00 67.83 15.40 3.00 15.74 0.57 9.28 3.33 28.34 1.67 32.33 49.37 17.16 1.88 7.20 0.88

Maximum 125.00 218.23 30.97 24.00 45.77 2.17 54.67 25.67 217.00 57.67 245.33 97.49 196.42 60.47 62.63 3.68

Skewness -0.06 0.12 0.04 0.93 0.21 -0.05 0.36 0.70 1.00 0.91 0.90 -0.67 0.64 1.18 0.91 -0.05

Kurtosis 0.08 1.09 -0.12 2.11 -0.25 0.15 0.11 1.08 1.99 0.84 1.62 0.11 0.57 2.80 1.19 0.10

DFF = Days to 50% flowering; PH = Plant height (cm); PL = Panicle length (cm); PP = Number of panicles per plant; FLL = Flag leaf length (cm); FLW = Flag 
leaf width (cm); FLA = Flag leaf area (cm2); TTP = Number of total tillers per plant; FGP = Number of filled grains per panicle; CGP = Number of chaffy grains 
per panicle; TGP = Number of total grains per panicle; SF = Spikelet fertility (%); BYP = Biological yield per plant (g); SYP = Seed yield per plant (g); HI =:  
Harvest index (%) and  HSW = 100 seed weight (g) 

Fig. 2. Distribution of different yield related traits in selected genotypes of 3k rice panels

A SNPs (SNP: 3800019) of a gene Os10g0159800 (Alcohol 
dehydrogenase) was found to be associated with the spikelet 
fertility (p = 0.00064), chaffy grains per panicle (p=0.00231), 
and panicle length (p=0.00195) traits in this analysis. Among 
these three traits, mean allelic difference for chaffy grains 
per panicle was found to be 9.76%. This indicates this gene 
might be involved in the regulation of grain filling in rice. 
In one of the recent reports, it was reported that alcohol 

dehydrogenase activity was required for aerobic growth 
in Arabidopsis (Ventura et al. 2020). Further, expression 
of ADH was higher in the leaves of Arabidopsis and rice 
implicating its role in leaf development (Singh et al. 2024). 
The Adh1 mutants in rice demonstrated impaired embryo 
development and increased sensitivity to glucose and 
sucrose during germination, supporting this observation 
(Takahashi et al. 2014). Furthermore, it was discovered that 



August, 2024] Pyruvate pathway genes regulating yield related traits in rice 333
Ta

bl
e 

4.
 S

ig
ni

fic
an

t m
ar

ke
r-

tr
ai

t a
ss

oc
ia

tio
ns

 b
as

ed
 o

n 
M

LM
 m

od
el

 fo
r g

ra
in

 y
ie

ld

Tr
ai

t
SN

P 
ID

(G
en

e)
Ch

r N
o.

Po
si

tio
n

LO
D

G
en

et
ic

 
R2

p-
va

lu
e

M
aj

or
 A

lle
le

(A
1)

M
in

or
 A

lle
le

(A
2)

M
AF

 (%
)

M
ea

n 
of

 
A1

M
ea

n 
of

 A
2

D
iff

er
en

ce
 b

et
w

ee
n 

A1
 &

 A
2 

(%
)

Ph
en

ot
yp

ic
 P

-v
al

ue

SF
38

00
01

9
(O

s1
0g

01
59

80
0)

10
In

tr
on

3.
19

2
0.

04
56

0.
00

06
4

27
3 

(T
)

58
 (A

)
21

.2
5

79
.6

3
81

.8
5

2.
71

0.
04

50

CG
P

38
00

01
9

(O
s1

0g
01

59
80

0)
10

In
tr

on
2.

63
7

0.
03

56
0.

00
23

1
27

3 
(T

)
58

 (A
)

21
.2

5
20

.1
2

18
.3

3
9.

76
0.

09
39

PL
37

95
83

0
(O

s1
0g

01
59

80
0)

10
In

tr
on

2.
71

0
0.

03
77

0.
00

19
5

19
1 

(G
)

12
9 

(A
)

67
.5

4
22

.1
2

22
.7

1
2.

60
0.

03
22

PH
76

02
78

2
(O

s0
6g

02
46

50
0)

6
Ex

on
2.

72
4

0.
03

76
0.

00
18

9
29

0 
(C

)
38

 (G
)

13
.1

0
12

0.
78

10
1.

19
19

.3
6

4.
89

E-
09

FL
A

60
62

84
1

(O
s1

1g
02

16
00

0)
11

In
tr

on
3.

02
7

0.
04

27
0.

00
09

4
24

0 
(G

)
79

 (A
)

32
.9

2
28

.2
8

29
.5

0
4.

14
0.

12
29

FL
L

60
65

32
8

(O
s1

1g
02

16
00

0)
11

3’
 U

TR
2.

85
9

0.
03

99
0.

00
13

9
26

9 
(A

)
60

 (-
)

22
.3

1
28

.9
0

29
.5

6
2.

23
0.

18
02

SF
 =

 S
pi

ke
le

t f
er

til
ity

 (%
); 

FL
A

 =
 F

la
g 

le
af

 a
re

a 
in

 (c
m

2 ); 
FL

L 
= 

Fl
ag

 le
af

 le
ng

th
 (c

m
); 

PH
 =

 P
la

nt
 h

ei
gh

t (
cm

); 
PL

 =
 P

an
ic

le
 le

ng
th

 (c
m

); 
CG

P 
= 

N
um

be
r o

f c
ha

ffy
 g

ra
in

s p
er

 p
an

ic
le

, a
nd

 M
A

F 
=:

 M
in

or
 

al
le

le
 fr

eq
ue

nc
y

Fig. 3. (A) Distribution of favorable and unfavorable alleles in IRRI Elite 
lines for PL, PH  and FLA, (B) Allelic variation of 20 popular rice varieties/
genotypes at five different SNP positions; orange color depicts the 
distribution of the favorable allele, while the green color is employed 
to represent the unfavorable allele; N is missing allele and - represents 
deletion

the inferior rice spikelets had a down-regulated ADH protein 
level, which increased spikelet fertility (Zhang et al. 2014). 
Therefore, the function of alcohol dehydrogenase on seed 
filling needs to be studied further. 

A SNP in the exon region of the gene Os06g0246500 
(Pyruvate dehydrogenase E1 alpha subunit; SNP: 7602782) 
was found to be associated with the plant height. Further, 
the major allele and minor allele’s phenotypic means were 
120.78 and 101.19 cm, respectively which differ significantly 
(p = 4.89E-09), having a percent difference of 19.36%. In 
Arabidopsis, it was reported that the mutations in pyruvate 
dehydrogenase complex genes affected plant growth and 
development (Song and Liu 2015). The development of 
amyloplasts in grains is also reportedly impacted by the 
plastid pyruvate dehydrogenase E1 alpha subunit in rice 
(Lei et al. 2022). Besides, PDH forms the basic substrate for 
histone acetylation and regulation of epigenetic changes in 
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plants (Huang and He 2024). Therefore, the functional role of 
pyruvate dehydrogenase in regulating plant height can be 
better understood by the development of loss-of-function 
mutants of these genes in rice. 

Two SNPs in Pyruvate kinase 5 (OsPK5: Os11g0216000) 
(6065328 and 6062841) were found to be associated with 
flag leaf area and length. The phenotypic mean value of 
allele G (Chr11: 6062841) was 28.28 and allele A was 29.50 
cm2 and the percent difference between them was 4.14%. 
In rice, the OsPK5 gene regulates the equilibrium of GA and 
ABA, glycolytic metabolism, and seed germination. Previous 
studies revealed that OsPK5 gene dysfunction affected the 
GA/ABA balance, prevented glycolytic metabolism, delayed 
seed germination and seedling growth, elevated glucose 
levels, and decreased energy levels (Yang et al. 2022a). 
However, the mean difference for the alternate alleles of 
the gene didn’t show significant differences under the 
experimental conditions. Recently, it was reported that the 
soybean PK21 gene regulates salt responsiveness (Liu et al. 
2024). Thus, the effect of the favorable allele of PK5 needs 
to be further validated. 

Interestingly, most of the IRRI Elite Lines (75%) had a 
favorable allele for the markers associated with the plant 
height (SNP:7602782) and flag leaf area (SNP:6062841). 
However, 107 elite lines had unfavorable alleles for the 
panicle length (Fig. 3A). In contrast to IRRI elite lines, the 
allelic difference for the identified MTAs and 20 popular 
varieties/genotypes (Fig. 3B) showed seven varieties (CO36, 
IR64-IL, CAUVERY, IR26, IR34, IR74 and Swarna) possessed 
inferior/unfavorable alleles at four out of five associated 
SNPs. IRRI elite lines are those having the higher breeding 
values (Juma et al. 2021) and this analysis indicates the 
scope for the improvement of popular Indian rice varieties 
like Swarna for the SNPs involved in the pyruvate pathway 
genes. In summary, this work identified six marker-trait 
associations in the nine genes involved in the pyruvate 
pathway. Further, as compared to the IRRI elite lines, popular 
varieties possessed inferior alleles for the MTA. This provides 
a scope for targeting the pyruvate pathway genes in marker-
assisted breeding programs. 
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