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broad and narrow adaptations. Additive main effects

and multiplicative interaction (AMMI) analysis is one

of the most popular multivariate methods to predict

adaptation and stability of cultivars over multiple

environments (Chuni Lal et al. 2019; Ajay et al. 2019).

AMMI model is fit in two stages; first, the main effects

of the model are estimated using the additive two-way

analysis of variance (ANOVA) by least squares. Then,

the singular value decomposition (SVD) is applied to

the residuals from the ANOVA, i.e. to the interaction,

to obtain the estimates for multiplicative terms of AMMI

model.

AMMI model assumes equal weights for all

genotypes being tested and that data is free of outliers.

Outliers are common in field data such as multi-

environment trials which lead to biased results, mis-

interpretation of data and bad decisions. Since data

contamination is more a rule than an exception in real-

life data, there has been growing interest in the use of

these statistical methodologies which allow for valid

results even if model assumptions are violated (Copt

and Heritier 2007; Lourenco et al. 2011). To overcome

the problem of analysing two-way contaminated data

and to understand GEI rationally, Rodrigues et al.

(2016) introduced a robust AMMI model where the

linear fit, underlying the ANOVA method, is replaced

by a robust fit (M-regression; Huber, 1964) and the

use of the standard SVD by a robust SVD approach.

We designate robust AMMI model of Rodrigues et al.
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Introduction

Genotype-by-environment interactions (GEI) is an

important component of any plant breeding programs

for identification of a cultivar for a target location.

Understanding the GEI is important at all stages of

breeding programs and can be used to establish

breeding objectives, identify ideal test conditions and

formulate recommendations for cultivar adaptation

(Sabaghnia et al. 2008). In order to understand GEI

among genotypes, multi-environment trials are

conducted wherein different genotypes show

differential response across environments for a trait

of interest enabling the identification of genotypes with



88 B. C. Ajay et al. [Vol. 81, No. 1

(2016) as R-AMMI-RLM. In the present study, for GEI

analysis of data with outliers we suggest using linear

fit for ANOVA and Robust SVD for analysing

interaction effects and we designate this model as ‘R-

AMMI-LM’. The new model being proposed was tested

using datasets from peanut and wheat to establish

the usability of the model across the crops.

Materials and methods

Dataset 1

Raw data : Raw data set consisted of 52 peanut

genotypes involving 47 advanced breeding lines; two

cultivated varieties of different seed size (BAU-13,

Somnath); two P-efficient (ICGV-86590, SP250A) and

a P- inefficient (NRCG-7320) lines. These genotypes

were evaluated during 2013 and 2014 rainy seasons

under two levels of P i.e. without P application (LP)

and with application of 50 kg/ha P2O5 (as single super

phosphate) (MP). Nitrogen (as urea) and potash (as

murate of potash) were applied at 50 kg/ha N and 60

kg/ha K2O equally for both the treatments. The

recommended crop management practices were

adopted for raising a healthy crop. Field screening,

was conducted at ICAR-Directorate of Groundnut

Research, Junagadh (lat 21°31’N, long 70°36’E), India,

in a medium black calcareous (17% CaCO3) clayey,

Vertic Ustochrept soil having moderate available

phosphorus (15kg/ha P), 7.5 pH, 0.7% organic C,

268kg/ha N, 300 - 400kg/ha K, 5kg/ha available S and

1.6, 15, and 0.78kg/ha DTPA extractable Fe, Mn, and

Zn, respectively. Crop was harvested at maturity and

pod yield was recorded.

Simulated data

Using this raw data four more data-sets were simulated

and were designated as 2SD5, 2SD10, 4SD5 and

4SD10. In-order to simulate these data sets standard

deviation (SD) was calculated for each environment

separately. For 2SD5 data set, 5 per cent outliers were

introduced into raw data randomly at the rate of 2 times

SD. For 2SD10 data set, 10 per cent outliers were

introduced into raw data randomly at the rate of 2 times

SD. On the other hand, for 4SD5 and 4SD10 data

sets 5 and 10 per cent outliers were introduced into

raw data sets as contamination at the rate of 4 times

SD (Fig. 1).

Dataset 2

The dataset 2 comprised of 36 bread wheat genotypes,

of which ten genotypes were from international core

set for abiotic stress developed by International Maize

and Wheat Improvement Centre (CIMMYT), Mexico

Fig. 1. Comparison of raw data set and simulated data sets (2SD5 = 5% data outliers with 2 standard deviation;

4SD5 = 5% data outliers with 4 standard deviation; 2SD10 = 10% data outliers with 2 standard deviation;

4SD10 = 10% data outliers with 4 standard deviation)
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and 26 elite Indian genotypes released for different

agro-ecological conditions. The experiments were

conducted at experimental farm, ICAR-Indian

Agricultural Research Institute, New Delhi, India. The

latitude of the research farm is 280 38’23"N, longitude

770 09’27"E and altitude is 228.61 m above mean sea

level. The experiment was laid out in a 6×6 simple

lattice design with two replications and two dates of

sowing with the help of Weintersteiger seed drill. The

crop was sown on 15
th

 November (Timely sowing-TS),

15
th

 December (late sowing-LS) and 6
th

 January (Very

late sowing-VLS) to create temperature effect during

growth stages during 2012 and 2013. Standard

cultivation practices prescribed for wheat under

irrigated conditions were precisely followed. Crop was

harvested at maturity and seed yield per plot was

recorded.

Robust-AMMI model analysis

AMMI model combines the features of ANOVA and

SVD as follows: first the ANOVA estimates the additive

main effects of the two-way data table using linear

models (LM); then the SVD is applied to the residuals

from the additive ANOVA model, estimating interaction

principal components (IPCs). AMMI model may be

written as follows,

Yi,j,k = µ+αi+βj+ 
1

N

n=∑ (λnγi,nδn,j)+ρi,j+εi,j,k

where yi,j,k is the yield of the ith genotype in the

jth environment for replicate k; µ is the grand mean; αi

is the genotype deviations from µ; βj is the environment

deviations from µ; λn is the singular value of the IPC

analysis axis n; γi,n and δn,j are the ith and jth genotype

and environment IPC scores for axis n, respectively;

ρi,j is the residual containing all multiplicative terms

not included in the model; εi,j,k is the experimental error;

and N is the number of principal components retained

in the model.

Unlike AMMI model, Robust-AMMI model uses

robust linear model (RLM) based on M-Huber estimator

(Huber, 1981) instead of LM model to calculate ANOVA

followed by the use of robust SVD procedure instead

of standard SVD (Rodrigues et al. 2016) and we

designate this Robust-AMMI using RLM model as ‘R-

AMMI-RLM’. Here we propose a new Robust-AMMI

model which calculate ANOVA using linear models

(LM), instead of robust linear model (RLM), followed

by robust SVD procedure. This modification reduces

unaccounted variability explained by residuals and

improves the accuracy of AMMI model. All the

statistical analysis involving AMMI model were

performed in R (R core team 2018) using packages

MASS and pcaMethods. Root mean square error

(RMSE) was calculated to compare the outcomes of

LM and RLM based Robust-AMMI models.

Results and discussion

Robust AMMI models are used for studying GEI when

there is contamination in the data and when it is difficult

to assign weights to outlying observations. One of the

important features of AMMI model is ANOVA showing

proportion of sum of squares due to main effects using

linear models at the first stage and computation of

successive IPCAs (Rodrigues et al. 2016) to the

residuals from the ANOVA to obtain the estimates for

multiplicative terms of AMMI model by using SVD.  In

any plant breeding trials from field data outliers are a

common problem. In order to overcome th problem of

outliers Rodrigues et al. (2016) introduced a robust

AMMI model where the linear fit, underlying the

ANOVA method, is replaced by a robust fit (M-

regression; Huber, 1964) and the use of the standard

SVD by a robust SVD approach. We designate robust

AMMI model of Rodrigues et al. (2016) as R-AMMI-

RLM. In the present study, for GEI analysis of data

with outliers we propose to estimate ANOVA by linear

fit models at first stage and Robust SVD at later stages

over residuals from ANOVA for analysing interaction

effects and we designate this model as ‘R-AMMI-LM’.

Results of both ‘R-AMMI-LM’ and ‘R-AMMI-RLM’

models are presented and discussed.

Table 1 presents ANOVA of ‘R-AMMI-LM’ and

‘R-AMMI-RLM’ models for raw data and four simulated

data sets. Significant differences were observed for

genotype (G), environment (E) and GEI for pod yield

in raw data (0), 2SD5, 2SD10 and 4SD5 for both ‘R-

AMMI-LM’ and ‘R-AMMI-RLM’ models. 4SD10 data

had significant influence of E and G under both the

models whereas GEI was significant only with model

‘R-AMMI-LM’.

Variability percentage explained by different

components of ‘R-AMMI-LM’ and ‘R-AMMI-RLM’

models under different levels of outliers is presented

in table 2. Major portion of variability was explained

by E followed by GEI under both the models at all

levels of outliers. Also, as the extent of outliers

increases the proportion of variability explained by

interaction component (GEI) and unpredictable

component (residuals) increases, whereas, variability

explained by main components such as G and E
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Table 1. Mean sum of squares of Robust-AMMI with linear fit(R-AMMI-LM) and Robust-AMMI with robust fit (R-AMMI-

RLM) at different levels of outliers among 52 peanut genotypes

Source of Variation  Df 0 2SD5 2SD10 4SD5 4SD10

R-AMMI-RLM

Environment (E) 3 1265.8** 1185.85** 1152.93** 1166.05** 1082.20**

Genotype (G) 51 18.02** 18.62** 18.85** 18.66** 19.24**

Replication 4 2.61 2.76 4.45 2.71 4.24

E x G 153 7.60** 7.70** 7.66** 8.04* 8.28

IPCA1 53 9.33** 8.16** 12.88** 13.00** 9.09

IPCA2 51 5.92** 6.92** 6.19** 8.67 8.92

IPCA3 49 6.52** 13.22** 6.58** 8.34 23.46**

Residuals 204 1.55 2.52 3.16 6.05 9.59

R-AMMI-LM

Environment (E) 3 1290.4** 1323.2** 1365.23** 1372.67** 1439.20**

Genotype (G) 51 19.58** 21.49** 20.88** 24.75** 26.39**

Replication 4 3.53 2.05 4.39 2.48 12.25

E x G 153 8.23** 9.44** 10.04** 12.90** 15.39**

IPCA1 53 9.86** 13.09** 14.31** 16.88** 9.01

IPCA2 51 5.52** 6.46** 7.44** 9.71* 8.92

IPCA3 49 6.93** 9.85** 8.98** 9.38* 23.46**

Residuals 204 1.55 2.52 3.16 6.04 9.52

Table 2. Percent of variability explained by different

sources of variation under Robust-AMMI with

linear fit (R-AMMI-LM) and Robust-AMMI with

robust fit (R-AMMI-RLM)  at different levels of

outliers

 Source of Variation 0 2SD5 2SD10 4SD5 4SD10

R-AMMI-RLM

Environment (E) 61.2 57.3 55.3 50.5 43.47

Genotype (G) 14.8 15.3 15.4 13.7 13.14

Replication 0.2 0.2 0.3 0.2 0.23

E x G 18.7 19.0 18.7 17.8 16.96

Residuals 5.1 8.3 10.3 17.8 26.21

R-AMMI-LM

Environment (E) 59.9 56.4 55.7 47.9 43.1

Genotype (G) 15.5 15.6 14.5 14.7 13.4

Rep 0.2 0.1 0.2 0.1 0.5

E x G 19.5 20.5 20.9 23.0 23.5

Residuals 4.9 7.3 8.8 14.3 19.4

decreases. Among four data sets with outliers,

unpredictable component was low under ‘R-AMMI-LM’

compared to ‘R-AMMI-RLM’ model indicating that ‘R-

Table 3. Percentage of variability explained by

Interaction principal components (IPCs) and

Root Mean Square error (RMSE) under

Robust-AMMI with linear fit (R-AMMI-LM) and

Robust-AMMI with robust fit (R-AMMI-RLM) at

different levels of outliers

 Source of  0 2SD5 2SD10 4SD5 4SD10

variation

              R-AMMI-RLM

IPCA1 42.54** 28.77** 46.17** 38.26**20.40

IPCA2 25.97** 23.49** 21.34** 24.56 19.27

IPCA3 27.47** 43.10** 21.83** 22.70 48.68**

Total 95.98 95.36 89.34 85.52 88.35

RMSE 1.75 1.88 1.97 2.23 2.46

              R-AMMI-LM

IPCA1 43.76** 45.97** 48.06** 46.52**20.4

IPCA2 23.55** 21.85** 24.05** 25.75* 19.27

IPCA3 28.41** 31.99** 27.89** 23.9* 48.68**

Total 95.72 99.81 100 96.17 88.35

RMSE 1.74 1.86 1.92 2.18 2.38
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AMMI-LM’ model is better in analyzing the data with

outliers when compared to than ‘R-AMMI-RLM’.

Per cent variability explained by first three

interactions principal components (IPCAs) and root

mean square error (RMSE) are presented in Table 3.

For raw data (0), 2SD5 and 2SD10 IPCA1, IPCA2 and

IPCA3 were highly significant in both ‘R-AMMI-LM’

and ‘R-AMMI-RLM’ models; for 4SD5 only IPCA1 was

significant whereas for 4SD10 IPCA3 was significant

under ‘R-AMMI-RLM’ models. Whereas in ‘R-AMMI-

LM’ model for 4SD5 all three IPCAs showed significant

variation but in 4SD10 only IPCA3 was significant.

Unlike regular SVD based models such as AMMI,

robust-SVD based models such as ‘R-AMMI-LM’ and

‘R-AMMI-RLM’ being discussed here differs from

regular SVD based AMMI models in two aspects. In

the conventional SVD models all the eigenvectors are

orthogonal whereas in robust-SVD models

eigenvectors are not orthogonal. In conventional SVD

successive interaction principal components (IPCAs)

are found in descending order whereas it’s not the

case in robust-SVD models. Larger IPCAs may follow

the smaller ones (Hawkins et al. 2001) as observed in

Table 3 in the present study.

In ‘R-AMMI-RLM’ model total percentage GEI

variability explained by first three IPCAs for different

levels of outliers ranged from 85.52 to 95.98 with raw

data having high total percent variability (95.98%) and

4SD5 explaining the least (85.52%). Whereas in ‘R-

AMMI-LM’ model percentage GEI variability explained

ranged from 88.35 to 100% with 2SD10 having high

total percent variability (100%) and 4SD10 explaining

the least (88.35%). Root mean square error (RMSE)

was also lower for ‘R-AMMI-LM’ compared to ‘R-AMMI-

RLM’ at all levels of outliers.

In order to prove the superiority of ‘R-AMMI-LM’

over ‘R-AMMI-RLM’, wheat data set with 36 genotypes

evaluated under three different dates of sowing for

two consecutive years 2012 and 2013 was used.

ANOVA obtained for both the models, as presented in

Table 4, indicate that environment (E), genotype (G)

and GE interactions (GEI) were highly significant with

environment explaining maximum variation followed

by GEI and G. In both the models GEI was further

partitioned into four interaction principal components

(IPCAs). IPCA1 and IPCA2 together explained 83%

variability of GEI under ‘R-AMMI-LM’ whereas under

‘R-AMMI-RLM’ they explained 82% variability of GEI.

RMSE was calculated for both the models and ‘R-

AMMI-LM’ had lower RMSE values when compared

to ‘R-AMMI-RLM’. These results are in accordance

with peanut data set wherein ‘R-AMMI-LM’ model had

low RMSE values and slightly higher variability as

explained by their IPCAs. This example further

reinforces the superiority of model ‘R-AMMI-LM’ over

‘R-AMMI-RLM’.

‘R-AMMI-LM’ model proposed in this study is

more effective in studying genotype-environment-

interactions even in presence of outliers with very low

error variation compared to other AMMI model.
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Table 4. Mean sum of squares of Robust-AMMI with

linear fit (R-AMMI-LM) and Robust-AMMI with

robust fit (R-AMMI-RLM) among wheat

genotypes evaluated under six environments

Source of Df       R-AMMI-RLM R-AMMI-LM

variation

MSS % SS MSS % SS

Environment (E) 5 4714.10** 80.22 5030.30** 79.56

Genotype (G) 35 53.30** 6.35 61.40** 6.79

Replication 6 6.20 0.13 6.10 0.12

E x G 175 18.80** 11.20 20.90** 11.58

IPCA1 39 70.78** 73.30 69.92** 73.97

IPCA2 37 11.64** 11.43 13.55** 13.60

IPCA3 35 5.69** 5.29 3.96ns 3.76

IPCA4 33 6.45** 5.65 6.53** 5.84

Residuals 210 2.90 2.10 2.90 1.95

RMSE 3.00 2.91
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