
Abstract
The study meticulously assessed 77 experimental and eight commercial checks across three distinct Indian locations employing statistical 
tools: AMMI (additive main effects and multiplicative interaction), GGE [genotype main effect+ (G×E)], and MTSI (multi-trait stability 
index) to identify the best-suited hybrids and for the mega-environment. The environment predominantly shaped hybrid performance, 
influencing 4.24 to 68.12% of the variance, while genotype and genotype-environment interaction ranged from 13.43 to 37.76% and 
18.45 to 57.99%, respectively. GGE biplots identified hybrids G77 (DQL 2490 × DQL 2709) and G85 (DQL 2513 × DQL 2709) as promising 
in yield and stability, surpassing commercial checks. Impressively, the MTSI technique highlighted these hybrids, alongside 11 others, 
as elite performers, aligning closely with anticipated stability and mean values. Furthermore, environmental stratification amalgamated 
the test locales into a singular mega-environmental category. AMMI-derived Yield Stability indices unequivocally endorsed hybrids G77 
and G85 for their stability profiles. Crucially, these high-yielding, resilient hybrids not only promise to fortify food and nutritional security 
but also resonate with the Sustainable Development Goals (SDGs), exemplifying their pivotal role in advancing national nutritional 
objectives and broader global sustainability targets.
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Introduction 
It is projected that by 2050, the worldwide demand for food 
will increase twice so global food production will have to 
increase by 70% to meet the projected population growth 
(Dijk et al. 2021). The increased demand can be met by 
enhancing the productivity of major food crops, namely 
rice, wheat, and maize (corn), by a factor of two or more. The 
scope and pressure to enhance productivity are greater in 
developing countries than in developed countries, as the 
yield level in most of the developed countries is already 
high and has reached a plateau in some of the developed 
countries. Enhancing the productivity of major food 
crops in developing countries is much more challenging 
under changing climate scenarios and low-input-driven 
agriculture, especially in regions like East Africa and South 
Asia (Chivasa et al. 2021). In 2020, nearly one out of three 
people lacked regular access to adequate food (United 
Nations 2022).

Quality Protein Maize (QPM) commercialization can 
combat the food and nutritional insecurity that is common 
in some developing nations of the world (Bankole et al. 
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2023). Asia is the world’s second-largest maize producer; 
~31% of the total maize in the world is harvested from ~34% 
of the world’s total maize-growing land in Asia (Zaidi et 
al. 2016). The worldwide production of maize was around 
1123.07 million metric tons (MMT) in 2020-2021 (Food and 
Agriculture Organization 2022). However, enhancing maize 
yields under changing climate scenarios is a daunting task, 
as projections indicate that a 1°C increase in global mean 
temperature would decrease maize yields by 7.4 percent 
(Zhao et al. 2017). Maize plays a vital role in ensuring the 
food security of several countries in Latin America, Africa, 
and a few Asian countries. On the contrary, maize also plays 
a significant role in the sustenance of several food and non-
food-based industries in several developing countries. In 
India, maize has occupied the third most important cereal 
food crop and replaced sorghum in 2007-08 and pearl 
millet in 2012-13 as the most widely grown cereal food 
crop after rice and wheat. Maize is cultivated in a broad 
spectrum of climatic conditions, from extremely arid to 
humid environments; at sea level to above 4,000 meters in 
altitude, in irrigated to semi-arid circumstances during the 
rainy and summer seasons. 

As compared to field corn, quality protein maize (QPM) 
ensures the food and nutrition security of communities 
that rely heavily on maize. QPM has a higher biological 
value and has double the levels of the important essential 
amino acids lysine and tryptophan as compared to field 
corn. Lysine and tryptophan have important secondary 
roles as neurotransmitters in addition to their primary 
activities as protein building blocks. Because field corn 
generally possesses a low concentration of two important 
essential amino acids, namely lysine and tryptophan, the 
discovery of the endosperm mutant opaque2, has led to the 
development of Quality Protein Maize (QPM) germplasm 
with acceptable agronomic performance. The biological 
value of protein available in QPM is almost equal to that 
of milk, which can effectively reduce protein malnutrition 
(Vasal 2000). The nutritional advantage of QPM has led 
to increased investment in research and development of 
QPM developing countries across Latin America, Africa, and 
Asia. The approximate total area under QPM in the world is 
currently ~9 million acres. 

The development of maize hybrids that are nutritionally 
superior, like QPM, and can also perform better under 
changing climate scenarios is a top priority to simultaneously 
ensure food, feed, and nutritional security. The term 
“genotype-environment interaction” (GEI) pertains to how 
different environments impact the expression of different 
genotypes (Finlay and Wilkinson 1963). Understanding the 
proportion of genotype, environment, and GEI on the overall 
phenotype is crucial not only for exercising selection to 
bring improvement in any trait but also for the identification 
of stable genotypes across environments. The selection 

efficiency depends on the correlation between genotype 
and phenotype. The higher correlation between phenotype 
and genotype indicates higher heritability with low GEI or 
environmental influence on the trait, thus indicating a higher 
response to selection (Yan and Kang 2003). The presence of 
higher GEI not only affects the selection efficiency but also 
necessitates repeated evaluation at more locations and/
or years to identify genotypes with stable performance 
across the locations. Thus, it is essential to select the most 
stable genotypes based on multi-environment trials (MET) 
for a given environment in the presence of high GEI both 
to stabilize yield and also minimize yield losses under 
unfavorable environmental conditions. 

Several parametric and non-parametric statistical 
tools have been suggested for analyzing GEI. The stability 
methods proposed by Finlay and Wilkinson (1963) and 
Eberhart and Russell (1966) are extensively used and tend 
to be univariate but the response of a genotype in different 
environments is multivariate (Lin et al. 1986; Gauch 1988). 
Thus, advanced statistical techniques like AMMI (additive 
main effects and multiplicative interaction) and the GGE 
[Genotype main effect+(G×E)] biplots are considered 
more useful. The principal component analysis of GEI, 
along with the analysis of variance, is used to find the 
main effects of genotype and environment in the AMMI 
model (Gauch and Zobel 1997) but it does not include a 
quantitative stability metric, which is necessary for ranking 
genotypes according to yield stability. Later, Purchase (2000) 
introduced the AMMI stability value (ASV), based on the 
IPCA1 and IPCA2 scores, for each genotype to show how 
stable that genotype is. Subsequently, GGE biplot analysis 
was proposed, which combines both the main effects of 
genotype and GEI (Yan et al.2000). The GGE biplot analysis 
aids in assessing genotypes for mean performance as well 
as their stability across different environments. It simplifies 
and also completes the process of selecting the best-
suited genotype that is influenced by both the individual’s 
genetic makeup and their environment (Yan and Tinker 
2006). However, the GGE biplot can best be exploited while 
dealing with a single trait. Therefore, Olivoto et al. (2019a) 
proposed a multi-trait stability index (MTSI) to select high-
performing, stable genotypes in METs using a multi-trait 
approach. MTSI offers a unique selection procedure that 
enables the fine consideration of mean performance and 
stability while dealing with more than one trait (Olivoto 
et al. 2019b). The current study was conducted with the 
objective of identifying the best-performing QPM hybrids 
in terms of mean yield and environmental stability using 
AMMI, GGE, and MTSI. 

Materials and methods
The experimental material comprises 85 single cross-Quality 
Protein Maize hybrids, which include eight checks: IQPMH 
1601 (G134), IQPMH 1705 (G135), IQPMH 18-2 (G136), BIO 
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9544 (G137), DKC 9224 (G138), DKC 8221 (G139), DKC 8211 
(G140), and DKC 7204 (G141) (Supplementary Table S1). The 
experimental hybrids were generated by crossing 8 inbred 
lines from heterotic group (HG) B with 24 inbred lines from 
HG-A. Two inbreds viz., CML 161 and CML 165 collected 
from CIMMYT, Mexico, were used as testers to classify these 
inbreds into distinct heterotic groups. Out of 192 possible 
cross combinations as per line × tester mating design, 77 
crosses were generated depending on the synchronization 
in flowering between selected inbred lines. The 77 cross 
combination included the four different sets of crosses 
generated between 10 lines (DQL 2011, DQL 2099-1, DQL 
2192, DQL 2325, DQL 2487, DQL 2490, DQL 2513, DQL 2646, 
CLQRCY 40)of HG-Aand three lines (DQL 2700, DQL 2709, 
DQL 2751)from HG-B; 11 lines (DQL 2167, DQL 2192, DQL 
2246, DQL 2290-4, DQL 2306, DQL 2325, DQL 2543, DQL 
2631, DQL 2642, DQL 2668, CLQRCY 40) from HG-A and two 
lines (DQL 2698, DQL 2699)from HG-B; six lines (DQL 2021-1, 
DQL 2192, DQL 2631, DQL 2646, DQL 2668, CLQRCY 40) from 
HG-A and two lines (DQL 2743, DQL 2753) from HG-B; 13 
lines (DQL 2099-1, DQL 2167, DQL 2192, DQL 2325, DQL 2370, 
DQL 2452, DQL 2471, DQL 2487, DQL 2513, DQL 2543, DQL 
2545, DQL 2572, DQL 2642) from HG-A and one line (DQL 
2691) from HG-B. The details of inbred lines, i.e., pedigree, 
developing institution, grain type and grain color are given 
in Supplementary Table S2. The hybrids were evaluated at 
three locations, namely Ludhiana in Punjab, Hazaribagh 
in Jharkhand, and Rahuri in Maharashtra, during the rainy 
season 2021. The coordinates of Ludhiana, Jharkhand and 
Rahuri are 30°54’N 75°51’E, 23.98°N 85.35°E, 19.38°N 74.65°E 
and have an altitude of 244, 613 and 657 m above mean sea 
level, respectively.

The trial was conducted in a lattice (Patterson and 
Williams 1976) design with three replicates at each location. 
The entries were sown in two rows of 4 m with a between-row 
spacing of 0.6 meters and a plant-to-plant distance within 
the row of 0.2 m at all locations. Trials were managed at all 
three locations by following optimal agronomic and cultural 
procedures to raise a healthy crop. The observations were 
recorded on days to 50% anthesis (DA), days to 50% silking 
(DS), field weight (FW), grain weight (GW), and grain yield (GY 
in q/ha). The details of the crosses, along with their allotted 
genotype numbers, are given in Supplementary Table 3. 
The crosses have been represented by their corresponding 
genotype number in the result and discussion parts. 

Statistical analysis 

Analysis of variance
The data from each testing site was subjected to analysis 
of variance using the general linear mixed model (GLMM), 
under the assumption that genotypes were fixed and 
environments, replications, and blocks within a replication 
were random (Rusinamhodzi et al. 2020; Mhlaba et al. 2019).

The genotype-by-environment interaction (GEI) was 
studied to understand the behavior of experimental hybrids 
and to identify stable hybrids across locations using different 
approaches like the additive main effects and multiplicative 
interaction (AMMI) and genotype plus genotype-by-
environment (GGE) analysis (Gollob 1968; Gauch and Zobel 
1988; Vargas and Crossa 2000; Yan et al. 2000; Yan 2001, 
2002; Yan and Kang 2003; Yan and Tinker 2006; Zerihun 
2011). Additionally, AMMI’s stability values (ASV) and yield 
stability index (YSI) were used to rank the experimental 
hybrids (Purchase et al. 2000). Finally, the multi-trait stability 
index (MTSI), a quantitative value on the stability of each 
genotype, was generated by using a linear mixed-effect 
model, the weighted average of absolute scores (WAASB) 
(Olivoto et al. 2019a), for the selection of hybrids. 

The statistical analysis, namely, descriptive statistics, 
genetic variability parameters, individual and combined 
ANOVA across locations and genotypes by environment 
interaction, and stability parameter analysis, including 
AMMI (Gauch 1988), GGE (Yan et al. 2000; Yan 2001, 2002; 
Yan and Kang 2003; Yan and Tinker 2006), and MTSI (Olivoto 
et al. 2019a), were performed by using the ‘metan’ package 
version v1.15.0 (Olivoto and Lúcio 2020), and biplots were 
constructed by the ‘ggplot2’ version 3.3.4 package in 
RStudio (RStudio 2021). 

Results and discussion

ANOVA and mean performances of experimental 
hybrids
The result showed that the mean sum of squares for each 
studied trait differed significantly among genotypes, 
environments, and GEI. The combined analysis of variance 
exhibited highly significant variation for all the traits (Table 
1). Based on the results of the study, the environmental (E) 
factor accounted for the highest percentage of the total 
variability (G + E + GEI) for the traits DS, FW, and GW, while 
the GEI factor recorded the highest proportion of total 
variability for the traits DA and GY. The environmental 
contribution was recorded highest for FW, followed by 
GW, DS, GY, and DA, whereas the percent contribution of 
genotype was about 37.76% for DA, followed by GY (34.12%), 
DS (18.09%), GW (13.8%), and FW (13.43%). GEI contributed 
the most to DA, followed by GY, DS, GW, and FW towards 
total variation. There was a wide variation in GY, ranging 
between 24.3 q/ha and 92.5 q/ha, with 55.67 q/ha being 
the average GY. The mean value and ranges for the studied 
traits, namely DA (54.56; 48–65), DS (54.75; 50–68), FW (1.12; 
0.11-2.04), and GW (0.88; 0.03–1.56), show wide variation 
(Supplementary Table S4).

The results showed that environment is the major factor 
that influences the performance of the genotypes. The 
contribution of environment, genotypes and genotype-
environment interaction in total variance ranged from 4.24 
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to 68.12%, 13.43 to 37.76% and 18.45 to 57.99%, respectively 
(Table 1). All three components of the variance were 
statistically significant. Approximately equal proportions 
of genotype and genotype by environment interaction 
contributed to the total variance; together, they accounted 
for >60 percent. Therefore, it has become imperative to apply 
appropriate statistical tools like AMMI and GGE to identify 
stable genotypes across environments and/or location-
specific genotypes to maximize yield potential and farmers’ 
profitability. The present results are not an exception but 
are expected more often in multi-environment trials (MET). 
The underlying reasons are obvious due to variations in 
environmental factors like precipitation, temperature, and 
soil conditions. Balstre et al. (2009) also reported similar 
findings in maize. Rakshit et al. (2012) reported a 59.3–89.9% 
contribution of location to the total variation in sorghum. 
Kaya et al. (2006) reported that nearly 81% of the variation 
was explained by the environment in bread wheat multi-
environment data. Kumar et al. (2023) reported highly 
significant differences for environments, genotypes as well 
as for Genotype × Environment interactions (G×E). Sum of 
squares due to G × E interactions was high, may be due 
to the large differences in environmental mean for yield. 
While doing barley yield studies in Iran, Dehghani et al. 
(2006) observed the same thing. Campbell and Jones (2005) 
reported environmental variation of 23, 14, and 13% for 
the traits gin torn out, fiber strength, and fiber elongation, 
respectively, and genotypic variation ranging from 2 to 
84% in cotton. In the present study, G explained a relatively 
lower proportion of the variation than GE for all the traits 
under study. A lower proportion of G as compared to GE 
indicates that the performance of hybrids under evaluation 
relies more on environmental factors (Mohammadi et al. 
2009). The environmental component for DS, FW, and 
GW was more than 50%, indicating that the environment 
highly influences the expression of these traits. Thus, it 
becomes inevitable to identify either stable genotypes 
across environments or the best-adopted genotypes for 
the particular environment to stabilize and/or enhance the 
yield levels across the environments (Table 1).

GEI analysis 
AMMI ANOVA (Table 2) for grain yield confirmed that 
environment, genotype, and GEI had a statistically significant 
(p <0.001) effect. Environmental factors alone significantly 
affected about 29.83% of the total sum of squares (G + E + 
GEI) alone. The contribution of genotypic effects and GEI to 
the total sum of squares for grain yield was 34.12 and 36.05%, 
respectively. According to the results, PC1 accounted for 
roughly 64.6% and PC2 for approximately 35.4% of the GEI 
sum of squares (Table 2).

AMMI biplot
AMMI biplots were used to visually reflect the yield 
potential of the genotypes, stability levels, and interaction 
of test environments. Quantification of grain yield against 
PC1 scores (AMMI 1) provides insight into the interaction 
between QPM maize hybrids and test environments (Fig. 
1A). Hazaribagh and Ludhiana, both located far from the 
origin and marked by long vectors, are regions of significant 
interaction, while Rahuri, located close to the origin and 
with shorter vectors, reveals very modest interaction. 
The superior genotype exhibits a higher yield along the 
horizontal axis, while IPC1, representing the first interaction 
item, has a minimum value and is near zero on the vertical 
axis. In addition to maximizing grain performance, it is 
important to consider genotypes that display stability. 
Stable genotypes are located close to this line, indicating 
minimal G × E interaction. In poor and weak locations, 
genotypes with below-average grain yield performance 
can still be recommended if they possess a positive value 
for IPC1. 

The experimental hybrids, namely G85, G77, G84, G82, 
G131, G124, G34, and G50, positioned on the right side of 
the vertical axis and in proximity to the horizontal axis, 
clearly indicate their superior performance and stability 
across multiple locations. These hybrids consistently 
outperformed all three Quality Protein Maize (QPM) checks 
and the three normal corn checks in terms of mean grain 
yield. Seventeen hybrids are clustered closer to their points 
of origin, indicating that they are either widely adaptable 

Table 1. Sum of squares oftraits studied and percentage contribution towards total variation

Source of variation Environment Genotype GEI Rep. (Env.) Residuals

Degree of freedom 2 84 168 3 252

Traits Sum 
squares

% 
(G+E+GEI)

Sum squares % (G+E+GEI) Sum 
squares

% 
(G+E+GEI)

Sum 
Squares

Sum 
squares

DA 75** 4.24 666.7** 37.76 1023.7** 57.99 10.7 867.3

DS 2495.3** 55.18 818.2** 18.09 1208.4** 26.72 23.2 1014.8

FW 60.86** 68.12 12.00** 13.43 16.48** 18.45 0.20 8.14

GW 37.55** 67.35 7.70** 13.8 10.50** 18.83 0.17 5.17

GY 29015** 29.83 33191** 34.12 35064** 36.05 29 1301

** p<0.01
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or environmentally neutral, with normal to slightly above-
average mean yields. In the AMMI2 biplot, the first two 
main components (PC1 and PC2) accounted for 66.5% and 
33.5% of the total variation in GEI, respectively (Fig. 1B). The 
genotype-environment interaction was represented by 
projecting the genotype onto the environmental vector at 
right angles. The figure revealed that entries G73, G22, and 
G63 had poor stable performance across the environments 
despite having higher or lower grain yields. Quantification 
and classification of the genotypes were accomplished 
by calculating the yield stability index (YSI), which is a 
combination of the rank of AMMI’s stability values and the 
mean grain yield (Table 3). To find the most productive and 
stable QPM hybrids, YSI was employed for the screening. 
The lower absolute PC1 scores were found to be the best 
predictor of genotype stability as reported earlier by Asfaw 
et al. (2009).

The hybrids with the lowest YSI (Yield Stability Index) 
ratings are the most robust and productive. According to 
rYSI, the best hybrids in terms of stability and grain yield 
were G77, G85, G120, G104, G82, G137, G84, G76, G117, G14 
and G21, followed by checks G138, G140, and G139. Poor 
productivity and reduced stability were also noted in 
genotypes G16, and G63, followed by G29, and G11 (Table 
3). The check hybrids, viz. G138 (Check DKC 9224), G139 
(Check DKC 8221), and G140 (Check DKC 8211) with higher 
projection displayed greater variability, i.e., were not stable 
across the location and had strong interactions with the 
specific environments, suggesting the presence of higher 
variance among the hybrids in response to environmental 
conditions. This also implies the higher sensitivity of hybrids 
to the surrounding environmental conditions, leading to 
narrow adaptation (Ebdon and Gauch 2002).

The ranking based on the YSI ranked hybrids 77 and 85 
as having the highest yield. Genotypic responses varied 
among locations due to differences in testing environments 
and genetic heterogeneity among the hybrids evaluated. 
Taking into account the interplay between the genotype 
and its environment, stability analysis techniques like GGE 
and AMMI are considered beneficial for maize breeders to 
identify high-yielding and stable hybrids.

GGE biplots
A graphical representation of the combined variance of 
genotype and genotype by environment would aid in the 
identification of location-specific genotypes in the event of 
the absence of stable genotypes. The GGE biplot helps to 
exploit both genotype and environmental variance. GGE 
analysis can be applied to maximize yield levels through 
the exploitation of GGE variance. Another part of the 
GGE biplot that helps find the best genotypes based on 
stability is the AEC ordinate, which is a thick solid line that 
runs perpendicular to the AEC and shows variability (poor 
stability) in both directions. The GGE biplots site regression 
(SREG) model was utilized to produce genotype and 
genotype plus environment (GGE) biplots, which account 
for genotype main effects and genotype by environment 
interaction (GEI) effects while excluding the influence of 
random error. As per GGE analysis, the first two principal 
components (PC1 with 63.23 percent and PC2 with 25.53 
percent) account for 88.76 percent of the total variation 
in GEI (Fig. 1C). The GGE biplots of this study are ideal for 
which-won-where pattern analysis, genotype, and test 
environment evaluation. The data used in this study was 
environment-centered (centering = 2), not scaled (scale = 
0), and all GGE biplots either used column singular value 
partitioning (SVP = 2) or genotypic-metric preserving (SVP 
= 1) (Yan et al. 2017; Yan 2002). The graphical representation 
of biplots also facilitates the interpretation of the interaction 
between testing environments through the angle between 
their vectors. The long environment vectors indicated the 
higher discriminatory power of environments (Mebratu et 
al. 2019). The line connecting the marker of an environment 
to the origin of the biplot represents the vector of that 
environment, and the cosine of the angle between two 
vectors indicates their correlation (Yan and Tinker 2006). 
Based on the cosine of the angle between the two 
environmental vectors, Yan (2002) concludes that this 
angle describes the relationship between the two. If the 
two angles were close together, it meant that the hybrids’ 
performance in both environments was comparable; if 
they were perpendicular to one another, it meant that 
there was no correlation between the two environments, 

Table 2. AMMI analysis of variance for grain yield

Source Df SS MSS Total variation explained (%) GEI contributed (%)

Environment 2 29015 14507.7 29.83

Genotype 84 33191 395.13 34.12

GEI 168 35064 208.71 36.05

PC1 85 22667 266.67 - 64.6

PC2 83 12396 149.35 - 35.4

Residuals 252 1301 5.16 - 0.0

SS= Sum of squares, MSS= Mean sum of squares, and GEI= Genotype-environment interaction
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Fig. 1A. PC1 (AMMI 1) scores 
against grain yield  

Fig. 1B. Scatter plot of IPC1 vs. 
IPC2 in AMMI

and the performance of hybrids was negatively correlated 
with one another at obtuse angles. Analysis for the trait 
GY revealed acute vector angles representing all three 
locations: Hazaribag, Ludhiana, and Rahuri, as depicted in 
Fig. 1C. The angle between Rahuri and both Hazaribag and 
Ludhiana was found to be much smaller. Acute vector angles 
indicate a closer relationship between environments (Yan 
and Tinker, 2006). Therefore, all three locations exhibited a 
strong correlation. The closer relationships among different 
locations indicate the absence of crossover GE, indicating 
consistent genotype rankings across locations (Rao et al. 
2011). This phenomenon can be attributed to the fact that 
some genotypes are highly responsive to environmental 
variation, while others display stability due to the combined 
properties of their gene combinations. Consequently, the 
three testing locations could be grouped into one mega-
environment. 

The strong correlations indicated that the test 
environments were similar in terms of genotype performance 
(Makumbi et al. 2015; Sserumaga et al. 2016). Many times, the 
biological association between different traits of economic 
importance and yield in particular, also needs to be 
considered during the selection of genotypes. Sometimes, 
there is a need to strike a balance between different traits. 
For example, earliness is often associated with reduced 
yields. However, earliness is an important trait for developing 
hybrids that fit different cropping systems and moisture-
dense regions. Therefore, the objectives of breeding vary 

between different breeding programs. Therefore, breeding 
strategies also need to consider the selection of stable 
genotypes based on the performance of more than one 
desired trait. The utility of different stability measures like 
parametric, non-parametric, the AMMI stability model, 
and GGE biplots has been demonstrated and reported in 
several studies. However, as statistical techniques evolve, 
refinement of earlier techniques and/or the development 
of novel techniques will also continue.

Which-won-where and what 
The “Which-won-where” pattern biplot is appropriate for 
the visualization of mega-environment through grouping 
of similar kinds of locations (Gauch and Zobel 1997; Badu-
Aprakuet al. 2012; Abakemal et al.2016; Vaezi et al. 2019). 
This pattern (Fig. 1D) makes it possible to visually classify 
environments according to the degree to which they favor 
high-yielding genotypes that have been subjected to GEI. 
PC1 and PC2 accounted for 88.76% of the total variance, 
which was deemed to be adequate for model fitting and GGE 
biplot generation (Yang et al. 2009). The biplot displayed one 
mega-environment. The plot showed that hybrids G85 (DQL 
2513 x DQL 2709) and G77 (DQL 2490 x DQL 2709) situated on 
the vertex were the winning hybrids in terms of mean grain 
yield in all three locations. The vertex hybrids in the sector 
with no environment were G88, G58, G46, G16, G63, G29, 
G110, G116, and G104. This means that these hybrids would 
be the lowest-yielding hybrids in any environment. Similar 

Fig. 1E. The average-environ-
ment coordination view

Fi g.  1 F.  D i s c r i m i t i ve n e s  vs . 
r e p r e s e n t a t i v e n s s  o f  t e s t 
environments

Fig. 1G.  The interaction between 
mean grain yield and WAASB 
values (Y× WAASB biplot)

Fig. 1H. Genotypes with their 
respective MTSI values

Fig. 1C. The environment-vector 
view of the GGE biplot

Fig. 1D. The which-won-where 
view of the GGEbiplot for grain 
yield
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Table 3. Mean grain yield (t/ha), AMMI stability values (ASV), multi-trait stability index (MTSI) and ranking orders of the 144 maize hybrids 
tested across three environments

Genotype ASV YSI rASV rYSI Means MTSI

G1 1.539511 86 35 51 54.06667 6.689037

G2 0.846714 58 11 47 55.145 4.999937

G3 2.335262 111 57 54 53.345 5.469082

G9 1.117982 89 20 69 48.56333 6.559716

G10 0.866852 88 12 76 46.165 5.14913

G11 0.818473 89 9 80 43.29167 5.187074

G12 1.503956 84 34 50 54.10667 3.878278

G13 2.186951 83 51 32 58.39667 5.970102

G14 0.579873 14 4 10 64.86667 4.64044

G16 1.195221 109 24 85 34.65667 6.037122

G17 1.291134 90 25 65 49.23333 5.145726

G18 0.578835 49 3 46 55.355 3.684689

G20 1.71152 116 41 75 46.38333 4.738691

G21 1.473566 44 33 11 64.745 2.66905

G22 3.148827 137 73 64 49.43333 4.207007

G26 1.135315 83 21 62 50.395 4.807964

G27 1.836663 98 43 55 53.03667 4.234409

G28 1.596404 110 37 73 47.38833 4.233139

G29 1.464658 115 31 84 39.28333 5.565816

G30 1.580718 67 36 31 58.63 4.212691

G31 1.140276 99 22 77 45.325 5.759109

G32 2.785201 85 66 19 62.73333 3.63679

G33 0.72708 74 7 67 48.87333 4.636651

G34 0.428621 30 2 28 60.175 4.703679

G35 3.096896 120 71 49 54.755 4.162184

G41 2.815669 138 68 70 48.43833 4.534372

G42 2.579432 123 63 60 50.98167 4.055155

G45 0.640468 43 6 37 57.06667 4.038354

G46 3.815794 159 80 79 43.59 5.967531

G48 2.487721 135 61 74 47.25833 5.606701

G49 2.457339 125 59 66 49.07667 4.727894

G50 1.008135 41 16 25 60.77667 4.702665

G51 2.108176 106 49 57 51.91833 4.373851

G52 1.450687 81 29 52 53.42667 6.315096

G54 0.762067 49 8 41 56.37833 3.94925

G58 5.243071 123 85 38 57.00833 4.655521

G63 2.786621 149 67 82 40.54333 5.564876

G65 1.666546 100 39 61 50.77167 6.211697

G70 1.436274 86 28 58 51.42833 4.513891

G72 1.142404 68 23 45 55.63333 2.788219

G73 4.325841 101 83 18 63.135 5.276836

G74 2.511025 130 62 68 48.77667 4.98078

G76 2.330746 64 56 8 66.415 2.935055

G77 2.709501 66 65 1 74.30833 2.695162
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G79 2.227769 89 55 34 57.77333 3.602574

G82 0.831716 15 10 5 67.45 3.363178

G84 1.025033 24 17 7 66.86167 3.224243

G85 2.886333 71 69 2 73.93833 3.727558

G86 2.190221 73 52 21 61.53667 5.271492

G88 4.976965 100 84 16 63.51667 3.39963

G89 0.28173 54 1 53 53.35667 4.40632

G90 3.336797 103 77 26 60.46667 4.140853

G94 2.91341 118 70 48 55.045 4.744848

G97 2.183305 86 50 36 57.255 4.667851

G103 3.200684 135 76 59 51.41 6.236182

G104 3.84869 85 81 4 68.82833 2.866424

G106 1.916037 116 45 71 48.11667 5.157917

G108 2.00123 81 46 35 57.30667 3.087001

G109 0.638891 77 5 72 48.05333 5.846348

G110 3.729447 157 79 78 44.92333 5.362152

G111 2.199473 136 53 83 39.59667 3.831392

G116 3.514143 98 78 20 61.57833 4.223724

G117 1.465828 41 32 9 66.205 4.123885

G118 2.102953 88 48 40 56.48333 3.61344

G119 2.694369 81 64 17 63.48167 3.358699

G120 3.106808 75 72 3 69.67833 5.583844

G121 1.63614 77 38 39 56.95 3.66212

G122 1.87242 125 44 81 41.95667 5.601771

G124 2.210065 77 54 23 60.935 5.389776

G126 3.153688 103 74 29 59.66 3.316651

G127 2.463546 104 60 44 55.81333 5.77591

G128 1.073279 40 18 22 61.40333 4.308008

G129 1.3531 68 26 42 56.16667 4.380266

G130 1.459514 86 30 56 52.69333 5.131184

G131 0.954975 29 14 15 63.91333 2.90542

G132 0.964989 78 15 63 50.11833 3.970279

G133 2.454739 91 58 33 57.77667 3.824587

G134 1.681497 70 40 30 58.64667 6.200345

G135 3.163042 102 75 27 60.26833 5.332132

G136 1.831972 66 42 24 60.90667 5.172828

G137 2.070273 53 47 6 67.18833 3.044627

G138 4.009454 94 82 12 64.665 3.80833

G139 0.871491 27 13 14 64.34 2.506993

G140 1.093984 32 19 13 64.49167 4.385314

G141 1.395541 70 27 43 56.00333 3.859653

kinds of studies were conducted by Yan and Rajcan (2002) 
for the identification of mega-environments. Samonte et al. 
2005, Yanet al.2001 and Laurie and Booyse (2015) all reported 
that the SREG model can make a biplot pattern that shows 

yield and stability in two dimensions using PCA1 and PCA2 
scores. The present study corroborates previous studies 
showing that the GGE biplot methodology can be used to 
identify stable and high-yielding maize hybrids (Alwala et 
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Table 4. Selection differential for the waasby

VAR Factor Xo Xs SD SDperc h2 SG SGperc Sense

1 FW FA 1 1.121149 1.287538 0.166389 14.84097 0.313774 0.052209 4.656717 Increase

2 GW FA 1 0.877816 1.012756 0.134941 15.37233 0.3172 0.042803 4.876096 Increase

3 GY FA 1 55.67104 64.62551 8.954474 16.08462 0.471784 4.22458 7.588469 Increase

4 PH FA 2 185.6657 190.2859 4.620211 2.488457 0 0 0 Increase

5 EH FA 2 98.41529 101.6513 3.235988 3.288095 0 0 0 Increase

6 DA FA 3 54.56471 54.11538 -0.44932 -0.82347 0.232258 -0.10436 -0.19126 Decrease

7 DS FA 3 54.74902 54.34615 -0.40287 -0.73584 0.261554 -0.10537 -0.19246 Decrease

FW= Field weight, GW= Grain weight, GY= Grain yield, PH= Plant height, EH= Ear height, DA= Days to 50% anthesis, DS= Days to 50% silking,Xo= Original 
population mean, Xs= Mean of selected genotypes, SD= Selection differential, h2= heritability, SDperc= Selection differential percentage, SG= Selection 
gain, SGperc= Selection gain percentage, and Sense= Desired selection sense

al. 2010; Oyekunle et al. 2017).

Mean grain yield and stability of hybrids 
Another part of the GGE biplot that helps find the best 
genotypes based on stability is the AEC ordinate, which 
is a thick solid line that runs perpendicular to the AEC and 
shows variability (poor stability) in both directions. In order 
to visualize the hybrids’ mean grain yield and stability, an 
AEC representation of the biplot was constructed (Fig. 
1E). Genotypes’ yield was indicated by the AEC abscissa 
(shown as a single arrowed line) pointing towards a higher 
mean yield. Thus, hybrids G77 and G85 had maximum 
yield stability across environments, followed by G137, G84, 
G76, G117, G14, G21, G138, G139, while G16, G63, followed 
by G29, and G111 were recorded as least yielders. The 
AEC ordinate, which was a thick, solid line perpendicular 
to the AEC, indicated more variability (poor stability) in 
both directions. Thus, hybrids G77 and G85, with minimal 
projection from the AEC abscissa, were highly stable in terms 
of mean grain yield across the location. These two hybrids 
were outperforming all eight checks. The check hybrids, 
viz., G138 (Check DKC 9224), G139 (Check DKC 8221), and 
G140 (Check DKC 8211), with higher projection, displayed 
greater variability, i.e., were not stable across the location. 
The “discrimination and representativeness” approach 
(Fig. 1.F) provides a handy visual for analyzing the degree 
to which each of the three testing environments can be 
distinguished from one another. In a study carried out by 
Singh et al. 2024, testing of 24 single cross hybrids and four 
checks across three environments was done, which revealed 
the significant GEI for all the studied traits. Both GGE biplot 
and AMMI analysis revealed the three high-yielding hybrids 
with average stability. 

Multi-trait stability index (MTSI) 
All of the attributes assessed in the study indicated strong 
(p< 0.05) GEI, as indicated by the p-values for likelihood 
ratio tests of the traits. Recently, Olivoto et al. (2019a) 
calculated a weighted average of absolute scores (WAAS) 

using linear mixed models to characterize the stability of 
genotypes across a range of environmental conditions. 
The computation of WAASB (stability alone) and WAASBY 
(stability and all other examined features) allowed 
simultaneous selection based on all the traits studied 
or traits of absolute necessity. For the WAASBY values, a 
Pearson’s correlation matrix was calculated, and the retrieved 
high-magnitude interactions were categorized as common 
factors. Extracting WAASBY values from each individual 
character enabled the classification of seven attributes into 
three factors (FA). Under FA1, the characteristics associated 
with FW, GW, and GY were categorized; under FA2, PH and 
EH were grouped; and under FA3, DA and DS were classified 
(Table 4). EPA scores were used for selecting individuals 
based on their genotype and ideotype distance (Euclidian). 
Table 4 presents the mean performance and WAASBY index 
selection differential (SD) for the component traits. The 
WAASBY index had a positive standard deviation for all traits, 
and its mean SD% was 7.21%, with the DA and DS having 
the lowest (-0.82 and -0.73%) and the GY having the highest 
(16.08%). The mean performance of the traits, DA and DS, 
had a negative SD% (Table 4).

The study grouped the genotypes into two different 
categories based on the interaction between mean grain 
yield and WAASB values (Y × WAASB biplot), facilitating 
the simultaneous selection of genotypes with optimized 
stability and mean performance (Fig. 1G). Y x WAASB biplot 
approach grouped the genotypes into four categories, each 
represented by a separate quadrant (Fig.1.G). The approach 
was adopted in the present study, and the approach proved 
effective in choosing the most productive and stable 
genotypes, as evidenced by the positive SD% of WAASBY 
scores for the traits FW, GW, and GY and the anticipated 
negative SD% for the mean performance of the flowering 
traits, viz., DA and DS (Table 4). One environment (Ludhiana) 
was plotted in quadrant II of the biplot with no genotype, 
while Hazaribagh was in quadrant IV with 36 genotypes 
and Rahuri in quadrant III with 49 genotypes. The WAASBY 
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index was used in conjunction with an LMM to perform a 
unified selection for both average performance and stability. 
The genotypes and environments that fall under quadrant 
I are those that are most likely to change over time, have 
a high discrimination ability and have lower productivity 
than the grand mean. There were unstable genotypes 
in Quadrant II, but their grain yield was above the mean. 
Because of their high grain yields and discriminatory 
abilities, the environments located in this sector demand 
special attention. Quadrant III genotypes are less productive 
than the grand mean, but they are more likely to remain 
stable due to their lower WAASB levels. The environments 
shown in this quadrant were seen as being under-whelming 
productive and lacking in discrimination abilities. Due to 
the high magnitude of productivity and strong stability 
performance as projected lower values of WAASB, the 
genotypes included in quadrant IV are widely adapted and 
have a high degree of productivity. In the present study, 36 
hybrids fell in quadrant IV, depicting these hybrids as having 
higher productive ability and stable across the location.
The most stable hybrids with the highest mean performance 
across all assessed traits were selected at a selection intensity 
of 15%, as indicated by lower MTSI values. Genotypes viz., 
G139, G21, G77 followed by G72, G104, G131, G76, G137, G108, 
G84, G126, G119 were selected as the best hybrids. Selection 
intensity placed genotype G82 (DQL 2513 × DQL 2691) with 
MTSI 3.36 at the cut point (Fig. 1.H; red circle). The hybrids 
G1, followed by G9, G52, and G103, were identified with a 
high MTSI value reflecting sub-par performance and weaker 
stability (Fig. 1.H, genotypes nearer to the origin). In a study 
carried out by Patel et al. (2023), the performance of 45 sweet 
corn genotypes were assessed under three environments 
and the multi-trait stability index identified seven genotypes 
with higher phenotypic stability and mean performance for 
all interactive traits.

The primary benefit of MTSI’s simultaneous selection for 
mean performance and stability is the capacity to fine-tune 
weights and rescale across traits in accordance with the 
breeder’s needs. Based on their correlations, the exploratory 
factor analysis identified the number of latent variables or 
constructs that can be reduced to common factors (Ullman 
2006). The estimation of final factor scores then enabled 
the management of multi-collinearity (Olivoto et al. 2017). 
When compared to commonly used indices, the WAASBY is 
unambiguous, and weights can be applied to prioritize mean 
performance above stability while selecting genotypes. It 
was determined that YSI stability measure is significantly 
correlated with other stability measures such as Eberhart 
and Russell’s (S2 di), Wricke’s (Wi), and Shukla, while Finlay 
and Wilkinson’s (bi) and Linn and Binns’ (Pi) correlation with 
any of the other approaches was only moderate (Purchase 
et al. 2000). Previous works that assessed the stability and 
mean performance of genotypes, taking into account a 

number of variables, could have gained from this approach, 
including intra-trait interactions (GET biplots) and yield × 
trait interactions (GYT biplots) (e.g., Yan and Fregeau-Reid 
2018; Kizilgeci et al. 2019; Kendal 2019; Koundinya et al. 
2019; Nduwumuremyi et al. 2017; Bocianowski et al. 2019). 
Thirteen best entries were selected with 15% selection 
intensity based on low MTSI values, which were selected as 
best hybrids. The ranking based on the YSI ranked hybrids 
G77 and G85 as having the highest yielders and surpassed 
commercial checks also. Considering the genotype x 
environment interaction, the selected hybrids may be tested 
under AICRP for further release and commercial cultivation. 

Supplementary material
Supplementary Tables S1 to S4 are provided, which can be 
accessed at www.isgpb.org
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Supplementary Table S1. List of the checks used in the study

S. No. Name of Hybrid Grain type Grain Colour Year of release Developing institution

1. Bio 9544 Semi-dent Orange-yellow 2014 Bioseeds India Ltd.

2. DKC 7404 Semi-dent Orange-yellow 2020 Bayer crop Sciences

3. DKC 8211 Semi-dent Orange-yellow 2021 Bayer crop Sciences

4. DKC 8221 Semi-dent Orange-yellow Research Hybrid Bayer crop Sciences

5. DKC 9224 Semi-dent Orange-yellow Research Hybrid Bayer crop Sciences

6. IQPMH 1601 (IQMH 202) Flint Orange 2020 ICAR-IIMR, Ludhiana

7. IQPMH 1705 (IQMH 203) Flint Orange 2020 ICAR-IIMR, Ludhiana

8. IQPMH 18-2 Flint Orange Research Hybrid ICAR-IIMR, Ludhiana

Supplementary Table S2. Details of inbred lines used for making crosses

S. No. Inbred Line Pedigree/source 
population

Developing 
institution

Grain type (flint/
dent/semi-dent)

Colour of the kernel 
(orange/yellow/white)

Heterotic Group 
(A/B/AB)

1. DQL-2011 HKI-193-23-D-1-1-1-1 ICAR-IIMR, 
Ludhiana

Semi-dent Orange A

2. DQL-2021-1 HKI-5072-2-2BT ICAR-IIMR, 
Ludhiana

Flint Orange A

3. DQL-2064 Seed Tech 2324 ICAR-IIMR, 
Ludhiana

Flint Orange A

4. DQL-2099-1 HQPM-7 ICAR-IIMR, 
Ludhiana

Flint Orange A

5. DQL-2167 Temp x Trop (Ho)QPM-
23-BBB-1-1-1 

ICAR-IIMR, 
Ludhiana

Flint Orange A

6. DQL-2192 Su2Su2O2O2 Comp-R-
BBB-27-B-B-1-1  

ICAR-IIMR, 
Ludhiana

Flint Orange A

7. DQL-2246 WNCQPM-10343-1 ICAR-IIMR, 
Ludhiana

Flint Orange A

8. DQL-2290-4 DML-1230-1 ICAR-IIMR, 
Ludhiana

Flint Orange A

9. DQL-2306 DML-2062 ICAR-IIMR, 
Ludhiana

Flint Orange A

10. DQL-2325 CLQRCY 47-3-1-2-1-1 ICAR-IIMR, 
Ludhiana

Flint Orange A

11. DQL-2370 DQL 2248 x DQL 2208-
P-57

ICAR-IIMR, 
Ludhiana

Flint Orange A

12. DQL-2452 DQL 2248 x DQL 2184-
P-127

ICAR-IIMR, 
Ludhiana

Flint Orange A

13. DQL-2471 DQL 2164 x DQL 2180-P 
-68

ICAR-IIMR, 
Ludhiana

Flint Orange A

14. DQL-2487 DQL 2024 x DQL 2208-P 
-52

ICAR-IIMR, 
Ludhiana

Flint Orange A

15. DQL-2490 DQL 2024 x DQL 2208 
P-82

ICAR-IIMR, 
Ludhiana

Flint Orange A

16. DQL-2513 DQL -621-1-1-4-13-1 ICAR-IIMR, 
Ludhiana

Flint Orange A

17. DQL-2543 DQL 2054 x DQL 2231-
P-57

ICAR-IIMR, 
Ludhiana

Flint Orange A

(i)
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18. DQL-2545 DQL 2054 x DQL 2231-
P-60

ICAR-IIMR, 
Ludhiana

Flint Orange A

19. DQL-2631 DQL 2054 x DQL 2096-
P-76

ICAR-IIMR, 
Ludhiana

Flint Orange A

20. DQL-2642 DQL 2054 x DQL 2096-
P-117

ICAR-IIMR, 
Ludhiana

Flint Orange A

21. DQL-2646 DQL 2063 x DQL 2231-
P-14

ICAR-IIMR, 
Ludhiana

Dent Orange A

22. DQL-2668 DQL 2063 x DQL 2231-
P-122

ICAR-IIMR, 
Ludhiana

Flint Orange A

23. DQL-2691 VL-174583 ICAR-IIMR, 
Ludhiana

Flint Orange B

24. DQL-2698 VL-174593 ICAR-IIMR, 
Ludhiana

Dent Orange B

25. DQL-2699 VL-174593-1 ICAR-IIMR, 
Ludhiana

Flint Orange B

26. DQL-2700 VL-174596 ICAR-IIMR, 
Ludhiana

Flint Orange B

27. DQL-2709 VL-174620-1 ICAR-IIMR, 
Ludhiana

Flint Orange B

28. DQL -2743 VL-174877 ICAR-IIMR, 
Ludhiana

Flint Orange B

29. DQL-2751 VL-174931 ICAR-IIMR, 
Ludhiana

Semi dent Orange B

30. DQL-2753 VL-174932 ICAR-IIMR, 
Ludhiana

Flint Orange B

Supplementary Table S3. List of the genotypes used in the study

Genotypes Genotypes Genotypes

1 G1 DQL 2011 x DQL 2700 31 G49 DQL 2325 x DQL 2698 61 G111 DQL 2642 x DQL 2699

2 G2 DQL 2011 x DQL 2709 32 G50 DQL 2325 x DQL 2699 62 G116 DQL 2646 x DQL 2700

3 G3 DQL 2011 x DQL 2751 33 G51 DQL 2325 x DQL 2700 63 G117 DQL 2646 x DQL 2709

4 G9 DQL 2021-1 x DQL 2743 34 G52 DQL 2325 x DQL 2709 64 G118 DQL 2646 x DQL 2743

5 G10 DQL 2021-1 x DQL 2753 35 G54 DQL 2325 x DQL 2751 65 G119 DQL 2646 x DQL 2751

6 G11 DQL 2064 x DQL 2700 36 G58 DQL 2370 x DQL 2691 66 G120 DQL 2646 x DQL 2753

7 G12 DQL 2064 x DQL 2709 37 G63 DQL 2452 x DQL 2691 67 G121 DQL 2668 x DQL 2698

8 G13 DQL 2064 x DQL 2751 38 G65 DQL 2471 x DQL 2691 68 G122 DQL 2668 x DQL 2699

9 G14 DQL 2099-1 x DQL 2691 39 G70 DQL 2487 x DQL 2691 69 G124 DQL 2668 x DQL 2743

10 G16 DQL 2099-1 x DQL 2700 40 G72 DQL 2487 x DQL 2700 70 G126 DQL 2668 x DQL 2753

11 G17 DQL 2099-1 x DQL 2709 41 G73 DQL 2487 x DQL 2709 71 G127 CLQRCY 40 x DQL 2698

12 G18 DQL 2099-1 x DQL 2751 42 G74 DQL 2487 x DQL 2751 72 G128 CLQRCY 40 x DQL 2699

13 G20 DQL 2167 x DQL 2691 43 G76 DQL 2490 x DQL 2700 73 G129 CLQRCY 40 x DQL 2700

14 G21 DQL 2167 x DQL 2698 44 G77 DQL 2490 x DQL 2709 74 G130 CLQRCY 40 x DQL 2709

15 G22 DQL 2167 x DQL 2699 45 G79 DQL 2490 x DQL 2751 75 G131 CLQRCY 40 x DQL 2743

16 G26 DQL 2192 x DQL 2691 46 G82 DQL 2513 x DQL 2691 76 G132 CLQRCY 40 x DQL 2751

17 G27 DQL 2192 x DQL 2698 47 G84 DQL 2513 x DQL 2700 77 G133 CLQRCY 40 x DQL 2753

(ii)
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18 G28 DQL 2192 x DQL 2699 48 G85 DQL 2513 x DQL 2709 78 G134 Check IQPMH 1601

19 G29 DQL 2192 x DQL 2700 49 G86 DQL 2513 x DQL 2751 79 G135 Check IQPMH 1705

20 G30 DQL 2192 x DQL 2709 50 G88 DQL 2543 x DQL 2691 80 G136 Check IQPMH 18-2

21 G31 DQL 2192 x DQL 2743 51 G89 DQL 2543 x DQL 2698 81 G137 Check Bio 9544

22 G32 DQL 2192 x DQL 2751 52 G90 DQL 2543 x DQL 2699 82 G138 Check DKC 9224

23 G33 DQL 2192 x DQL 2753 53 G94 DQL 2545 x DQL 2691 83 G139 Check DKC 8221

24 G34 DQL 2246 x DQL 2698 54 G97 DQL 2572 x DQL 2691 84 G140 Check DKC 8211

25 G35 DQL 2246 x DQL 2699 55 G103 DQL 2631 x DQL 2698 85 G141 Check DKC 7204

26 G41 DQL 2290-4 x DQL 2698 56 G104 DQL 2631 x DQL 2699

27 G42 DQL 2290-4 x DQL 2699 57 G106 DQL 2631 x DQL 2743

28 G45 DQL 2306 x DQL 2698 58 G108 DQL 2631 x DQL 2753

29 G46 DQL 2306 x DQL 2699 59 G109 DQL 2642 x DQL 2691

30 G48 DQL 2325 x DQL 2691 60 G110 DQL 2642 x DQL 2698

Supplementary Table S4. Relative dissection of the studied traits across the three environments

S. No. Parameters DA DS PH EH FW GW GY

1. Mean 54.56 54.75 185.67 98.42 1.12 0.88 55.67

2. SE 0.1 0.15 0.75 0.56 0.02 0.02 0.62

3. SD 2.28 3.3 16.98 12.65 0.44 0.35 13.9

4. CV 4.18 6.04 9.15 12.87 39.08 39.46 25

5. Min 48 (21 in 
Ludhiana)

50 (85 in 
Ludhiana)

130 (103 in 
Rahuri)

52 (136 in 
Ludhiana)

0.11 (88 in 
Ludhiana)

0.03 (88 in 
Ludhiana)

24.3 (110 in 
Rahuri)

6. Max 65 (1 in 
Ludhiana)

68 (2 in 
Ludhiana)

252.3 (110 in 
Ludhiana)

141.3 (76 in 
Ludhiana)

2.04 (126 in 
Rahuri)

1.56 (128 in 
Rahuri)

92.5 (104 in 
Ludhiana)

7. MinENV Hazaribagh 
(54.02)

Hazaribagh 
(51.62)

Rahuri (181.56) Ludhiana 
(96.14)

Ludhiana 
(0.72)

Ludhiana 
(0.55)

Rahuri (45)

8. MaxENV Rahuri 
(54.86)

Rahuri 
(56.42)

Ludhiana 
(188.04)

Rahuri (102.01) Rahuri (1.56) Rahuri (1.21) Hazaribagh 
(61.11)

9. MinGEN 86 (52) 86 (52.17) 86 (171.38) 103 (87.78) 29 (0.79) 29 (0.61) 16 (34.66) 

10. MaxGEN 1 (58) 11 (58.83) 21 (196.73) 51 (109.03) 77 (1.55) 77 (1.21) 77 (74.31)

(iii)


