
Abstract
Natural and artificial selection efforts combined several favorable alleles of economically important traits in crop plants. However, the 
progress made is insufficient to meet the future food requirements. Hence, exploring new genetic resources and breeding strategies is 
important for sustainable improvement in production. The epigenetic variation that alters the phenotype expression without altering 
the gene sequence has played a crucial role in the process of evolution of modern-day crop plants. The methylation-based epigenetic 
variations are known to inherit more consistently than other types of epigenetic variation. However, detection and quantification of 
methylation in the plant genome is costly, hence limiting its utility in crop improvement. In the present investigation, we demonstrated the 
low-cost but effective approach for detecting and quantification of natural DNA methylation variation in the rice genome by employing 
custom-designed markers called amplified methylation polymorphism polymerase chain reaction markers (AMP-PCR markers). The 
methylation detected was scored in an effective method which was further used for quantification. The natural methylation in the 
diverse population of rice was used to showcase the methylation diversity.
Furthermore, the methylation in germplasm accessions, breeding lines, and released varieties indicated the significant influence of 
artificial selection efforts on methylation in the rice genome. The genotypes cultivated in different ecologies exhibited different types 
of methylations. The results ensure the utility of the AMP-PCR assay approach in the detection and utilization of methylation variation 
at lower costs in crop improvement programs for complex economic traits. 
Keywords: AMP-PCR assay, Epigenetics, Genetic gain, Internal and External-methylation, Methylation diversity.
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Introduction
The process of evolution changed the morphology of many 
crop species through the pressurized process of natural 
and artificial selection over thousands of years (Reznick 
and Ghalambor 2001). Rice, a staple food crop of more than 
half of the world’s population also known to evolve from 
grasses to today’s form. Although the current snapshot of 
rice production, consumption, and trade indicates a general 
surplus, population growth in the coming decades may have 
an impact (Kastner et al. 2014). Considering the cumulative 
effects of global climate change, reduced farmland, and the 
increased needs of a growing global population, modern 
agriculture is in desperate need of solutions that can 
ensure global food security and sustainable development. 
The variation created or emerged through the process 
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of evolution is extensively utilized in many rice breeding 
programs. Classical crop breeding is still a powerful method 
to obtain crops with improved economic traits, but its 
potential is gradually declining owing to exhausted genetic 
variation (Chepurnov et al. 2011). Furthermore, the variation 
that exists naturally for a trait may not be completely due to 
its inherent property or due to genetic sequences. Research 
advances in the recent past opened avenues to account for 
non-genetic components of variation in crop improvement 
programs (Shen et al. 2018; Xu et al. 2019). 

Among the non-genetic components, the environment 
plays an important role in modifying the expression of the 
character. However, the environment can affect the pattern 
of expression of genetic variation which is more commonly 
known as genotype by environment interactions (Gagneur 
et al. 2013). On the other hand, epigenetic modifications 
DNA methylations, are known to have a significant impact 
on the evolutionary journey of many plant species, including 
rice (Li et al. 2008). DNA methylation-induced epigenetic 
modifications are known for their stable inheritance 
(Ganguly et al. 2018). Utilizing the heritable epigenetic 
variation in breeding programs could be promising 
(Dalakouras et al. 2021). Understanding the causes as well 
as the stability of newly incorporated epigenetic variants 
over generations will be crucial for fully realizing the 
potential of epigenetic variation to improve crops (Crisp 
et al. 2022). Some reports documented the phenotypic 
variation caused by epialleles for agronomic traits without 
variation in gene sequences. For example, variations in fruit 
ripening in tomatoes (Manning et al. 2006), fruit yield in oil 
palm (Ong-Abdullah et al. 2015), and floral morphology in 
toadflax (Cubas et al. 1999) are reported to be associated 
with methylation in the DNA sequence. The epigenetic 
modifications have a range of effects on phenotype, from 
limited influence on genetic factors to complete control of 
the trait (Richards 2006; Meng et al. 2021). 

Sources of epigenetic variation have been reported from 
many crops, from small genome Arabidopsis (Meng. et al. 
2021) to orphan legumes like dolichos bean (Ajaykumar 
et al. 2022) and to major crops like maize (Xu et al. 2020). 
Yet, limited literature is available on the understanding of 
epigenetic profiling in major crops. For better utilization 
of epigenetic variation in crop improvement, exploring 
the genomic diversity that exists in the crop species and 
verifying its association with an agronomic trait is crucial 
because the knowledge on epigenetic variations and 
regulation of complex traits in crop genomes can help in 
designing a breeding approach for climate resilience. It 
further ensures that regular DNA-based markers do not 
already capture identified epi-alleles. Since DNA methylation 
epi-alleles are highly stable and heritable, they play a vital 
role in crop improvement programs along with genetic 
variants for the trait. Rice being the most extensively 

researched crop, understanding of the epigenetic variation 
is limited. Genetic determinants for many agronomic traits 
including plant characteristics (Qian et al. 2001; Muhammed 
Azharudheen et al. 2022), yield and nutrition-related 
characteristics (Jing et al., 2010; Chattopadhyay et al., 2023), 
panicle characters (Yamagishi et al. 2002; Sah et al. 2023) and 
grain related characters (Nayak et al. 2022; Anilkumar et al. 
2022a) are deeply studied. The genetic variation identified 
is also being utilized for genomic selection programs for 
rapid genetic improvement of rice (Anilkumar et al. 2022b; 
Anilkumar et al. 2023). However, efforts to uncover the 
epigenetic variation in the rice genome are limited to a few 
genotypes owing to the cost involved in the epigenome-
wide sequence (Kurdyukov and Bullock 2016). Hence, it is 
important to adopt cost-effective yet efficient approaches 
that uncover maximum epigenetic variation in rice.

In this vein, the simplest approach of amplif ied 
methylation polymorphism polymerase chain reaction 
(AMP-PCR) assay was utilized by custom designing 
methylation-specific random amplified polymorphic 
DNA markers to scan the entire rice genome and identify 
methylation regions. The objective of the investigation was 
to capture the maximum methylation variation that exists 
in the rice genome across a diverse set of genotypes. The 
results of the investigation have significant scope in the 
strategic planning of breeding programs to account for 
epigenetic variation in rice. 

Materials and methods 

Experimental genetic material 
A diverse set of 144 genotypes, which included germplasm 
lines, released varieties, and advanced breeding lines, was 
used as genetic material in the investigation (Supplementary 
Table S1). The released varieties used in the study were 
developed for cultivation in different cultivation ecologies in 
various eastern Indian states. These varieties were developed 
in a time period of over 50 years through different breeding 
efforts. The various category of genetic material was 
considered in the present investigation to see the pattern 
of natural epigenetic modifications in quantitative terms 
over years of development in comparison to germplasm 
accessions and advanced breeding lines developed with 
new breeding approaches. 

Methylation-sensitive markers 
To detect and quantify the genome-wide methylation 
in experimental genotypes, an amplified methylation 
polymorphism-polymerase chain reaction (AMP-PCR) assay 
was used. AMP-PCR assay utilizes custom-designed random 
amplified polymorphic DNA (RAPD) primers, which carry 
a recognition site for restriction enzymes. The restriction 
enzymes used were isoschizomers, MspI and HpaII, which 
recognize and cleave the same recognition site, 5’-CCGG. 
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Table 1. The information on AMP-PCR-RAPD markers was designed and used in the study

S. No. Marker name Marker sequence Best amplifiable annealing temperature (℃) Amplicon size (bp) range 

1 AMP-PCR-RAPD-1 TGGACCGGTG 39.1 150–600

2 AMP-PCR-RAPD-2 ACCCGGTCAC 39.1 260–610

3 AMP-PCR-RAPD-3 AACCCGGGAA 36.6 180–510

4 AMP-PCR-RAPD-4 TTCCCGGGTT 36.6 230–700

5 AMP-PCR-RAPD-5 TTTGCCCGGT 38.6 255–1000

6 AMP-PCR-RAPD-6 CCCGGCATAA 34.5 140–1200

7 AMP-PCR-RAPD-7 CACCCGGATG 36.8 190–1400

8 AMP-PCR-RAPD-8 TCAGTCCGGG 38.0 160–1200

9 AMP-PCR-RAPD-9 TGCCGGCTTG 41.7 140–700

10 AMP-PCR-RAPD-10 CCCCGGTAAC 36.0 150–1200

11 AMP-PCR-RAPD-11 CAGTGCCGGT 40.4 150–700

12 AMP-PCR-RAPD-12 ACCGGCTTGT 38.1 210–1000

13 AMP-PCR-RAPD-13 GTCCGGAGTG 36.2 200–700

14 AMP-PCR-RAPD-14 ACACCGGAAC 34.9 240–1200

15 AMP-PCR-RAPD-15 CCCGGATGGT 38.5 150–1000

16 AMP-PCR-RAPD-16 AAGACCGGGA 35.5 210–610

17 AMP-PCR-RAPD-17 TCCCGGTGAG 38.0 250–700

18 AMP-PCR-RAPD-18 GAATCCGGCA 35.2 240–700

19 AMP-PCR-RAPD-19 ACCCGGAAAC 34.8 195–1000

20 AMP-PCR-RAPD-20 TGCCGGTTCA 38.1 255–900

21 AMP-PCR-RAPD-21 AGCCGGGTAA 36.2 180–1000

22 AMP-PCR-RAPD-22 CCCGGAAGAG 35.5 160–700

23 AMP-PCR-RAPD-23 CTACCGGCAC 36.9 200–1200

24 AMP-PCR-RAPD-24 ACCTCCGGTC 38.0 310–1250

25 AMP-PCR-RAPD-25 CTCCGGATCA 32.7 160–500

26 AMP-PCR-RAPD-26 TTTCCGGGAG 33.6 140–700

27 AMP-PCR-RAPD-27 AGGCCGGTCA 41.8 130–700

28 AMP-PCR-RAPD-28 CAACCGGTCT 34.3 230–600

29 AMP-PCR-RAPD-29 CCGCCGGTAA 40.1 180–450

30 AMP-PCR-RAPD-30 TCCGGGACTC 37.4 260–600

However, they differ in their sensitivity to the methylation 
at the recognition site (Salmon et al. 2008). A set of 30 AMP-
PCR-RAPD markers were designed by including methylation-
sensitive restriction enzyme sites, which enhance the 
specificity and efficiency of detecting methylation in the 
rice genome. Detailed information on markers designed 
and used in the study is provided in Table 1.

Genomic DNA isolation and restriction digestion 
The genomic DNA of experimental genetic material was 
extracted from 15 days old seedlings germinated at a 
laboratory in the optimal conditions without imposing 

any stress. The genomic DNA was isolated using the cetyl-
trimthyl-ammonium-bromide (CTAB) approach (Doyle and 
Doyle 1987). The quantity and quality of DNA were tested 
using a Nanodrop spectrophotometer (Thermo Fisher 
Scientific, USA). The working stocks were prepared by 
diluting the DNA to 20 ng/µL. The working samples of each 
DNA sample were replicated in three sets, where two sets 
were subjected to restriction digestion with two restriction 
enzymes and one set was maintained as a control set. 

Two restriction enzymes used, MspI and HpaII, which are 
isoschizomers known to have a high frequency of restriction 
recognition sites in plants (at least one in 256 bp) (Fulnecek 
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and Kovarik 2014). Considering the small genome size of 
rice, we hypothesized that restriction recognition sites for 
these enzymes are highly frequent in the rice genome. The 
enzymes MspI and HapII have sensitivity to methylation at 
restriction sites. MspI is highly sensitive to methylation at 
external cytosine, while HpaII is sensitive to methylation at 
internal methylation. However, methylation at both internal 
and external cytosine in the recognition site is not digested 
by both enzymes. The digestion of DNA with restriction 
enzymes was done as per the guidelines of the manufacturer 
of enzymes (New England Biolabs).

AMP-PCR amplification 
Following an AMP-PCR assay, a cleaved restriction fragment 
of DNA was used for amplification. The digested genomic 
DNA was amplified using a set of 30 customized AMP-PCR-
RAPD markers, each of which contained a CCGG recognition 
sequence for the Msp I and Hpa II enzymes. Amplification 
was done in three sets, one control and one each for MspI 
and HpaII digested samples. The PCR reaction mixture was 
prepared with 1-µL of 20 ng/µL template DNA, 1-µL AMP-
PCR-RAPD primer, 5 µL standard PCR premix, and 3 µL of 
nuclease-free water to make up the volume to 10 µL. The PCR 
program started with an initial denaturation step at 94°C for 
2 minutes, followed by an array of annealing temperatures 
starting from 42°C for 1-minute, 39°C for 1-minute, 36°C for 
1-minute, 33°C for 1-minute, and 30°C for 1-minute along 
with two minutes of elongation was provided for 40 cycles. 
Additionally, 8 minutes final elongation at 72°C was provided 
at the end of amplification. The PCR amplified products were 
separated on a 3.5% agarose gel in an electrophoresis unit 
and amplicons were visualized in a gel documentation unit.  

Methylation amplicon scoring 
The AMP-PCR products were scored from a minimum of 4 
amplicons per marker to 8 amplicons per marker based on 
the separation of amplicons for the control DNA sample in 
the agarose gel. Methylation amplicon scoring was made by 
comparing the presence of amplicon in the control sample 
and the presence/absence of amplicon in the MspI/HpaII 
digested samples. The scoring pattern followed for different 
types of methylation is detailed in Table 2. This scoring was 
followed for all 30 markers across 144 genotypes. 

Quantification of genome-wide DNA methylation 
The presence of different types of methylations for a 
marker allele across genotypes was considered methylation 
polymorphism. For example, the presence of internal 
methylation in one genotype and external/full methylation 
in another genotype for the first amplicon of marker one 
was counted as methylation polymorphism at that locus. 
The DNA methylation polymorphism across genotypes was 
quantified as frequency (%) of genotypes having different 
methylation patterns or methylation types. The frequencies 

of different types of methylations were calculated using the 
following formulae:

Non-methylation (%): 

Internal methylation (%): 

External methylation (%): 

Full methylation (%): 

Total methylation (%) = Internal methylation (%) + External 
methylation (%) + Full methylation (%)

Genome-wide methylation diversity assessment 
Genome-wide methylation diversity of experimental 
genotypes was assessed by converting methylation scores 
into a binary format considering internal, external, and full 
methylations as the presence of methylation (1) and no 
methylation as the absence of methylation (0). The binary 
pattern of methylation scores was used for the estimation 
of epigenetic diversity in the experimental genotypes. 
Methylation score information was used in neighbor-end 
joining tree construction based on allelic distances in DARwin 
software, and the distances were subjected to phylogenetic 
tree construction using iTOL online tool (Letunic and Bork 
2007). The scoring information was subjected to principle 
component analysis using the ‘factoextra’ package in 
R software (Kassambara and Mundt 2017) to reconfirm 
the possible clusters based on methylation patterns. The 
methylation-based clustering of genotypes was subjected 
to analysis of molecular variance (AMOVA) to explore the 
variation within and among methylation groups using 
‘GenAlex’ software version 6.5 (Peakall and Smouse 2012). 
Furthermore, the different types of methylations were 
compared among different types of genetic material and 
genetic material developed for different ecologies used in 
the study. 

Results 

Methylation polymorphism and quantification 
The AMP-PCR assay with 30 custom-designed RAPD markers 
amplified a large number of loci across genotypes in the 
experimental material. Among the several amplifications, 
four to eight clearly differentiating amplicons on agarose 
gel were considered for scoring. A total of 120 amplicons 
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Table 2. Details on methylation scoring pattern and type of methylation 

Possible methylation at 
restriction site

Control MspI 
digested

HpaII 
digested

Score Methylation status Methylation 
type

MspI HpaII

5’-CCGG-3’ + - - 0 0 No methylation Type I

5’-CCMGG-3’ + - + 0 1 Internal cytosine methylation Type II

5’-CMCGG-3’ + + - 1 0 External cytosine  methylation Type III

5’-CMCMGG-3’ + + + 1 1 Full methylation Type IV

of different sizes over all the markers were scored. These 
120 loci were scored for their differential methylation 
status based on the property of restriction digestion of 
isoschizomers. The loci were differentiated into different 
patterns of methylations following the description 
presented in Table 2. Combining the information of all the 
markers alleles over all genotypes, methylation frequencies 
were calculated and expressed in percentage. Among 144 
experimental genotypes, Poornabhog recorded the lowest 
(15.83%) full methylation, and the advanced breeding line 19 
recorded the highest (61.66%) full methylation. On an overall 
basis, the average total methylation recorded was 48.65% 
of which full methylation accounted for 41.21% and internal 
cytosine (5.34%) and external cytosine (2.10%) methylation 
accounted for very low methylation in the experimental 
genotypes (Fig. 1). Average of 19.25% of the loci recorded 
no methylation in the corresponding genomic regions. On 
the other hand, among 120 marker loci generated by 30 
custom-designed AMP-PCR-RAPD markers, AMP-PCR-RAPD 
1.1 locus produced the highest methylation (95.10%) alleles, 
and AMP-PCR-RAPD 11.4 locus produced the lowest (1.38%) 
methylation alleles in the population. 

Methylation variation in different genetic material 
The frequency of different types of methylations recorded 
over all the marker loci across genetic material used in 
the experimentation was compared. The genetic material 
considered included germplasm accessions, released 
varieties, and advanced breeding lines. Comparatively 
equal frequencies of full methylation were observed for 
advanced breeding lines and released varieties. However, 
the full methylation pattern was observed lowest in 
germplasm accessions (Fig. 2). Internal cytosine methylation 
and external cytosine methylation also followed a similar 
trend. Correspondingly, germplasm accessions recorded 
the significantly highest no methylation frequency, while 
released varieties and advanced breeding lines recorded 
relatively low no methylation frequencies. 

Methylation variation in genotypes cultivated in 
different ecologies
The methylation variation in genotypes cultivated in 
different ecologies was assessed. Irrigated, lowland and 
upland rice cultivation conditions were considered as 

different growing ecologies. The experimental material 
was classified according to the ecology of cultivation. The 
frequency of different types of methylation was compared 
with the genotypes cultivated in different ecologies. 
Different types of methylations showed varied levels in 
genotypes cultivated in different ecologies. However, 
the variations were not significant from each other (Fig. 
3). However, there was no variation was observed in 
methylation alleles in genotypes of different ecologies. 

Methylation-based epi-genetic diversity in rice
The complete methylation variation explained by different 
types of methylation in the experimental material was 
converted into binary score considering methylation 
and no methylation as only two categories. The binary 
information on methylation and no methylation was then 
used for assessing the genome-wide diversity in the rice 
population. The methylation variation was used to classify 
the experimental genotypes following the neighbor-end 
joining algorithm. The phylogenetic tree constructed 
using iTOL online tool classified the genotypes into three 
subgroups (Fig. 4a). Among the three subgroups, subgroup 
1 had the highest genotypes (91) followed by subgroup 2 
with 49 genotypes and subgroup 3 with 4 genotypes. The 
methylation alleles between the subgroups differentiated 
subgroups based on the methylation-based molecular 
variance assessed using AMOVA. The methylation variation 
between genotypes within subgroups was very less (14%) 
and the methylation variation among genotypes in different 
subgroups was high (86%) (Fig. 4b). The methylation alleles 
detected using AMP-PCR assay were successful in capturing 
methylation variation between genotypes. 

Discussion 
In the direction of exploring the epigenetic variation in crop 
improvement, detection and quantification of sources of 
epigenetic modifications remains crucial. Among different 
epigenetic modifications, DNA methylations are most useful 
owing to their highly stable Mendelian inheritance (Li et 
al. 2014). Except for the basic studies in the model crops 
like Arabidopsis (Dubin et al. 2015), there is a research gap 
that exists in the area of detection and utilization of DNA 
methylation in genetic improvement programs of higher 
crops. One of the main reasons for the slow advancement of 
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epigenetic improvement in higher crops is the cost involved 
in base-pair resolution sequencing approaches, including 
whole genome bisulfite sequencing (WGBS) (Crisp et al. 
2022). However, it is important to adopt an approach that 
can scan for methylation in the entire genome and detect 
significantly higher coverage of methylation in the genome 
at a low cost is more useful for implementing regular crop 
improvement programs. 

The AMP-PCR assay adopted in this investigation was 
found highly useful in capturing genome-wide methylation 
based on the restriction amplification principle. AMP-PCR 
markers were successful in differentiating methylated 
and non-methylated DNA sequences, showing greater 
polymorphism between DNA-methylated and non-
methylated loci in a diverse set of rice genotypes. Since 
the AMP-PCR markers were custom-designed or modified 

Fig. 1. Quantification of type of methylation in the population. AMP-
PCR assay differentiated the type of methylation based on the cytosine 
molecule methylated. The percentage of methylated alleles of different 
methylation groups from among the total methylation alleles was used 
to estimate the percent methylation in each category

Fig. 2. Differential methylation in different genetic materials. The 
quantum of methylation in each methylation type was compared 
among different genetic materials used in the study. ABL: advanced 
breeding lines, RV: released varieties

Fig. 3. Differential methylation in genetic materials of different 
cultivation ecologies. The quantum of methylation in each methylation 
type was compared among genetic materials cultivated under different 
growing ecologies

Fig. 4. Methylation diversity in the rice population. (a) phylogenetic 
tree constructed based on methylation score information depicting the 
three subpopulations formed from the experimental rice population 
based on the methylation information and, (b) the subpopulations 
showed a higher significant variation among subpopulations than 
within subpopulations
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versions of RAPD markers, using them in smaller laboratories 
is quite easy, and the cost involved is also very marginal 
compared to the sequence-based approach (Phutikanit et al. 
2010). Further, this approach is very useful to detect various 
methylation patterns like internal cytosine methylation, 
external cytosine methylation, and full/complete 
methylation of DNA sequences. The methylation alleles 
were scored in binary form and used for the quantification 
of methylation in every genotype. The methylation variation 
in various genetic materials, including advanced breeding 
lines, released varieties, and germplasm accessions, was 
captured and quantified. The higher methylation content in 
the genomes of systematically bred genetic material than 
germplasm accession suggested artificial selection pressure 
exerted during breeding varieties inducing the methylation 
in the rice varieties. Contrasting results of low methylation 
in breeding lines than germplasm was reported in dolichos 
bean (Ajaykumar et al. 2021). The induced methylation 
during the breeding process may produce phenotypic 
expressions suitable to achieve breeding goals in favorable 
directions. However, there were no significant differences 
in methylation variation between genotypes of different 
growing ecologies because the adoptive traits for each 
ecology are different. Hence, methylation variation between 
genotypes of different ecologies is not comparable. 

Similar to the genetic sequence-based diversity 
among genotypes, there exists a diversity in methylation 
content in genotypes. In experimental rice genotypes, 
methylation profiles of genotypes detected by AMP-PCR 
assay explained the methylation divergence among the 
experimental genotypes. Methylation epi-alleles divided 
the experimental population into three subgroups based on 
the epi-allele-based distance between genotypes. Further, 
the methylation-based molecular variance between the 
subgroups was more significant than within subgroup 
variance, suggesting the efficiency of epi-alleles in assessing 
the divergence of experimental genotypes. Similar results 
were discussed in maize, where whole genome bisulfite 
sequencing was used to assess the methylation (Xu et 
al. 2019). These results may be further associated with 
any quantitative economic trait and the genotypes from 
distant groups may be utilized in methylation-based trait 
improvement. 

The results of the experiment have scope in the 
understanding association of methylation variation with 
some quantitative economic traits in rice. The methylation 
allele in the population may be used in the binary format 
considering methylation and no methylation for further 
exploitation in trait prediction experiments (Hu et al. 2015). 
Further, methylation allele information can be utilized to 
improve the prediction accuracy of genomic selection 
programs to improve the genetic gain in rice breeding. 
The AMP-PCR assay approach cannot replace the WGBS 

approach completely. However, AMP-PCR assay may be 
utilized for the initial quantification of methylation variation 
in the plant genome. The results of this investigation provide 
a new avenue for detecting and exploiting methylation 
variation in rice improvement programs at a minimal cost. 

Supplementary material
Supplementary Figure 1 and Supplementary Table S1 are 
provided and can be accessed at www.isgpb.org
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Supplementary Fig. 1. Principle component analysis using three components differentiating the population in to two sub-populations based 
on methylation information. (a) Principle component one and component two differentiating the main population in to subpopulations, (b) 
Principle component two and component three differentiating the main population in to subpopulations, (c) Three dimensional view of principle 
components and (d) scree plot showing number of principle components and respective percentage of methylation variation explained

(i)
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Supplementary Table S1. A list of material used in the present study

S.No. Genotype Ecology S. No. Genotype Ecology

1-40 Advance Breeding Lines 1-40 All Irrigated

Released varieties Released varieties

41 CR-DHAN-311 Irrigated 83 CR-DHAN-1014 Lowland

42 CR-DHAN-909 Irrigated 84 CR-DHAN-306 Lowland

43 CR-DHAN-800 Irrigated 85 DHARITRI Irrigated

44 CR-DHAN-508 Irrigated 86 RATNA Lowland

45 CR-DHAN-506 Lowland 87 SUPRIYA Irrigated

46 CR-DHAN-209 Upland 88 BINADHAN-10 Upland

47 CR-DHAN-310 Irrigated 89 VANAPRAVA Irrigated

48 CR-DHAN-301 Lowland 90 TARA Irrigated

49 CR-DHAN-307 Irrigated 91 UDAYA Lowland

50 CR-DHAN-203 Irrigated 92 INDIRA Upland

51 CR-DHAN-101 Irrigated 93 TAPASWINI Irrigated

52 CR-DHAN407 Irrigated 94 DURGA Lowland

53 IMPROVED TAPASWINI Upland 95 CR-DHAN-802 Upland

54 IMP-LALAT Irrigated 96 KALASHREE Irrigated

55 SAKTIMAN Irrigated 97 RADHI Irrigated

56 JALAMANI Upland 98 SATTARI Upland

57 PHALGUNI Lowland 99 ABHISHEK Irrigated

58 KETAKIJOHA Lowland 100 SADABAHARI Lowland

59 GEETANJALI Lowland 101 UTKALPRABHA Irrigated

60 LUNISHREE Lowland 102 SNEHA Irrigated

61 CR-SUGANDH DHAN 907 Irrigated 103 Tulsi Upland

62 CR-DHAN-100 Lowland 104 POORNABHOG Lowland

63 CR-DHAN-701 Lowland 105 LUNASAKHI Lowland

64 CR-DHAN-500 Lowland 106 KHIRA Irrigated

65 SAHABHAGIDHAN Lowland 107 DHALA HEERA Lowland

66 ANNADA Upland 108 JAYA Irrigated

67 LUNA SUVARNA Lowland 109 SAKET 4 Lowland

68 KALINGA-1 Lowland 110 SAMALEI Lowland

69 POOJA Lowland 111 NEELA Lowland

70 CR-DHAN-401 Lowland 112 KALANI-2 Lowland

71 SWARNA SUB-1 Upland 113 KHITISH Lowland

72 CR-DHAN 10 Irrigated 114 TN 1 Irrigated

73 SHATABDI Irrigated 115 NUA-CHINIKAMINI Lowland

74 HEERA Lowland 116 NUAKALJEERA Irrigated

75 CR-DHAN-507 Lowland 117-136 Advance Breeding Lines, 40-1 to 59 All Irrigated

76 CR-DHAN-510 Upland Germplasm Lines

77 Ajay Upland 137 NIPPONBARE Irrigated

78 SUMIT(CR-DHAN-404) Lowland 138 THAVALAKANA Lowland

(ii)



646 Manikala Chandrasekhar et al. [Vol. 84, No. 4

79 RAJALAXMI Upland 139 M-BLACK Upland

80 CR-DHAN-200 Lowland 140 BINDLI Lowland

81 CR-BORODHAN-2 Lowland 141 IC 301206 Lowland

82 CR DHAN 309 Upland 142 IC 343465 Lowland

143 IG -53 Lowland

144 IG-40 Lowland

(iii)


