
Abstract
Maize landraces serve as a goldmine for novel genes pertaining to tolerance to biotic and abiotic stresses, adaptability, and nutritional 
quality traits. Worldwide, maize landraces are cultivated in specific areas for their unique characteristics, as preferred by the farming 
community. In India, the North-Eastern Himalayan (NEH) region is rich in diverse maize landraces, some of which are unique globally. 
However, the utilization of these maize landraces in breeding programmes has been limited. Here, we discussed the importance of 
maize landraces as a source of diverse traits, besides mentioning some of the most promising landraces available globally. We presented 
the extent of genetic diversity present in NEH-based maize landraces using morphological, cytological, biochemical, and molecular 
markers. The distinctiveness of Sikkim Primitive – a unique landrace for its extraordinary prolificacy has been mentioned in detail. We 
also mentioned the genetic and genomic analysis undertaken on Sikkim Primitive for dissecting prolificacy in maize. 
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Introduction
Maize serves as a vital crop for food, feed, fodder, and fuel, 
along with its extensive industrial applications (Hossain 
et al. 2023; Tarekegne et al. 2024; Mishra et al. 2025). 
Taxonomically, maize (Zea mays ssp. mays) belongs to the 
Poaceae family and the Maydae tribe (Doebley 2004). It has 
a somatic chromosome number of 20, a genome size of 
2.3 gigabases, and encodes over 32,000 genes (Schnable 
et al. 2009). The domestication of maize traces back 
approximately 9,000 years to teosinte grass (Z. mays ssp. 
parviglumis) found abundantly around the Balsas River Basin 
in southwestern Mexico (Matsuoka et al. 2002). Subsequent 
hybridization with Z. mays ssp. mexicana in the central 
Mexican highlands, about 4,000 years post-domestication, 
further shaped modern maize genetics (Yang et al. 2023). 
As a result, contemporary maize represents a genetic 
amalgamation of both parviglumis and mexicana genomes. 
Modern maize now possesses unique characteristics suitable 
for higher grain yield and adaptability to climate change, 
besides higher nutritional qualities (Hossain et al. 2019).   

The molecular basis of maize domestication was 
explored by Doebley et al. (1990), who identified key genes 
responsible for its morphological evolution from teosinte. 
Specific loci instrumental in this transformation include 

teosinte branched1 (tb1) (Studer et al. 2011; Dong et al. 2019), 
teosinte glume architecture1 (tga1) (Doebley 2004; Wang et 
al. 2005; Wang et al. 2015; Studer et al. 2017), grassy tillers1 
(gt1) (Whipple et al. 2011; Wills et al. 2013; Wang et al. 2023), 
upper plant architecture1 (upa1) (Tian et al. 2019), upper plant 
architecture2 (upa2) (Tian et al. 2019), and tassel replace upper 
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ears1 (tru1) (Dong et al. 2017). These genetic factors played a 
crucial role in converting wild grasses into cultivated maize 
(Hossain et al. 2016).  

Following its initial domestication, maize diversified in 
Mexico’s highlands, where selection processes led to the 
emergence of numerous distinct races adapted to different 
environments (Merrill et al. 2009). Genetic mechanisms, 
including mutation, migration, and genetic drift, drove 
this diversification. Over thousands of years, maize spread 
across the Americas and was introduced to Europe following 
Christopher Columbus’s arrival in the New World on October 
12, 1492 (Mir et al. 2013). Through trade and colonization, 
maize further expanded to Asia and Africa, likely within a 
century (Prasanna and Sharma 2005). Even today, landraces 
of South American origin persist in regions such as Italy and 
Spain. In Brazil, maize landraces emerged from the crossing 
of varieties introduced from the United States with those 
cultivated by indigenous communities and European settlers 
after the discovery of the Americas (Paterniani et al. 2000).  

The advent of hybrid breeding, particularly single-
cross hybrids, significantly enhanced maize yield potential. 
However, challenges posed by climate change and a 
growing global population necessitate the development of 
high-yielding, nutritionally enriched, and climate-resilient 
maize hybrids. Despite the vast genetic diversity within 
maize germplasm, only a small fraction has been utilized in 
crop improvement programs worldwide. Maize landraces 
remain an invaluable genetic reservoir, offering novel genes 
that can contribute to future breeding efforts for sustainable 
maize production.  

Landraces: A foundation for modern maize
Landraces refer to locally adapted varieties of domesticated 
crops that continue to be cultivated by rural communities 
through traditional agricultural practices, without the use 
of formal breeding programs (Monroy-Sais et al. 2024). 
These landraces are known by various names, including 
heirloom, ancient, traditional, farmer, creole, folk, and local 
varieties (Villa et al. 2005). Additional terms used to describe 
related maize landraces include maize race, ecotype, and 
native maize variety (Elisa et al. 2022). The long-standing 
tradition of saving seeds from local maize for food and 
ceremonial purposes has facilitated the development of 
diverse subgroups and open-pollinated varieties (OPVs) 
in the Americas (Xolocotzi, 1985; Samayoa et al. 2018). 
Unlike hybrid maize, landraces are genetically diverse 
and heterogeneous, consisting of multiple genotypes 
selected by farmers for specific traits such as resistance to 
environmental stresses, flowering time, ear characteristics, 
plant structure, prolificacy, flavor, and other desirable 
attributes (Guzzon et al. 2021).  

Maize landraces are broadly classif ied into two 
categories: the old landraces found in Central and South 

America (the New World) and the newer landraces that have 
been cultivated globally (Van Heerwaarden et al., 2011). 
Before the widespread adoption of hybrid maize, these 
newer landraces retained substantial genetic diversity (Hong 
et al. 2024). Local farmers often named landraces based on 
distinctive features such as ear shape, grain texture, color, 
plant structure, vegetative cycle, or intended use (Burt 
et al. 2019). Some well-known examples of such names 
include White Palamo, Elote Conico, Purple-Pink Xuxuyul, 
Yellow Conico, White Cacahuacintle and Red Ladrillo (Elisa 
et al. 2022). Globally, significant maize landraces include 
Northern Flints, Southern Dents and Corn Belt Dents from 
the United States; Tuxpeño, Celaya, Chapalote, Olotillo, 
Serrano, Jala, and Cacahuacintle from Mexico; Cuban Flint 
from Cuba; Coastal Tropical Flint/Costeño and Tusón/Puya 
from the Caribbean and northern South America; Cateto 
and Cristal from Brazil and Argentina; Kenyan Yellow from 
Africa; Peruvian Purple from Peru; Nepalese Hill Maize from 
Nepal; Hopi Blue Corn from North America; Italian Eight-Row 
Flint from Italy; and Sikkim Primitive and Gurez from India. 
The genetic background of many modern maize hybrids 
traces back to landraces such as Corn Belt Dents, Northern 
Flints and Southern Dents (Goodman and Brown 1988; 
Troyer 1999).  

Landraces: A key to adaptation in a changing 
climate
In the context of climate change, landraces present immense 
potential for the genetic enhancement of maize to ensure 
food security (Frona et al. 2019). The rising incidence 
of drought across various regions worldwide poses a 
considerable challenge to modern agriculture (Wiebe et 
al. 2019). While a slight temperature increase may benefit 
crop yields in temperate regions, it could have adverse 
effects on food security in tropical and subtropical areas 
(Lobell and Burke 2008). Due to their broad adaptability 
and superior tolerance to environmental stresses, landraces 
serve as valuable genetic resources for breeding programs, 
offering greater resilience compared to modern cultivars 
(Wild et al. 2024). Their extensive genetic diversity plays 
a crucial role in enhancing adaptability and expanding 
the maize gene pool, particularly in terms of resistance to 
biotic and abiotic stresses, as well as improving nutritional 
quality and culinary attributes (De Kort et al. 2021). Advances 
in genomic technologies have facilitated the exploration 
of allelic variation and molecular mechanisms governing 
adaptation and agronomic traits in maize landraces (Corrado 
and Rao 2017; Guan et al. 2022). Additionally, landraces are 
rich in secondary metabolites such as carotenoids and 
phenolics, which contribute to stress tolerance (Guzzon et 
al. 2021; Palacios-Rojas et al. 2020; Elisa et al. 2022). They also 
hold promise for improving quality traits in modern maize 
cultivars (Tamang et al. 2024).  
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Globally, landraces are being extensively utilized 
to enhance maize breeding programs (Prasanna 2010). 
Research by Reid et al. (1990) on maize races from Mexico 
revealed distinct adaptations to different altitudes and 
resistance to the European corn borer (Ostrinia nubilalis). 
Furthermore, the Mexican landraces Nal-tel, Chapalote 
and Palomero exhibit resistance to maize weevil (Sitophilus 
zeamais) (Arnason 1994). The Chinese maize cultivar Dan340, 
derived from the landrace Lvda Red Cob, possesses multiple 
beneficial traits, including disease and lodging resistance, 
high combining ability, and broad adaptability (Zhao et al. 
2022).  

Another significant landrace, ‘Michoacan-21’ from 
Mexico, has demonstrated remarkable recovery from 
severe drought stress due to the presence of the latente 
gene (Sharma 2005). This landrace exhibits resistance to 
permanent seedling wilting and tissue desiccation, with high 
transpiration under irrigation and reduced transpiration 
under stress conditions. Similarly, the Mexican landrace 
GalTrini and SITexas from Nuevo León have been identified 
as highly tolerant to water deficit (Gonzalez-Hernandez et al. 
2021). In Africa, Nigerian landraces originating from Burkina 
Faso (TZm1162, TZm1167, and TZm1508) and Togo (TZm1472) 
have shown exceptional tolerance to drought and heat 
stress (Nelimor et al. 2020). Additionally, ‘Tuxpeño Sequia’ 
is a highly productive, early-maturing, drought-tolerant 
lowland maize race that thrives in fertile soils and is widely 
used in breeding programs.  

Many maize landraces from rural Africa possess 
high nutritional value and contain genes that enhance 
tolerance to adverse conditions such as drought, salinity, 
and extreme temperatures (Dwivedi et al. 2016; Yang et 
al. 2019). The multiple aleurone layer (MAL) present in 
landraces like ‘Coroico’ (a South American race of floury 
maize), ‘San Martin-105,’ and ‘San Martin-119’ facilitates 
higher accumulation of essential minerals such as iron 
and zinc (Wolf et al. 1972; Lim and Yi 2019; Paulsmeyer and 
Juvik 2023). Another significant landrace, ‘Burr’s White,’ was 
identified in the ‘100 Generations of Corn’ experiment at the 
University of Illinois for its high protein, oil, and fatty acid 
content (Hopkins 1899; Dudley and Lambert 2004). The 
selected strains from this study were later utilized to identify 
quantitative trait loci (QTLs) associated with enhanced 
protein and fatty acid composition (Willmot et al. 2006). 
Moreover, research conducted by Daood et al. (2003) on 
the germplasm collection at the Institute for Agrobotany, 
Hungary, identified landraces with high carotenoid 
concentrations. A list of landraces with traits important for 
climate change adaptation is given in Table 1.

The development of doubled haploid (DH) lines derived 
from maize landraces has demonstrated significant potential, 
as some of these lines exhibit grain yields comparable to 
those of elite cultivars (Strigens et al. 2013). The successful 

introgression of landrace-specific DH lines into elite maize 
varieties suggests that eliminating potentially harmful alleles 
during DH line development may enhance genetic stability. 
Furthermore, the significant genetic distance between 
landrace-derived DH lines and elite germplasm underscores 
their potential to broaden the genetic base of modern maize 
(Strigens et al. 2013). These DH lines are also considered ideal 
resources for association mapping and allele mining due 
to their rapid reduction in linkage disequilibrium (LD) and 
minimal population structure.  

The continued cultivation and preservation of maize 
landraces by farmers are largely driven by intrinsic, relational, 
and instrumental values (Monroy-Sais et al. 2024). However, 
research on effectively integrating these values into broader 
agricultural policies remains limited. The emphasis on 
maximizing yield and profit under the ‘Green Revolution’ 
model has negatively impacted agro-biodiversity and 
farmer livelihoods worldwide (Mulyoutami et al. 2023). 
Despite extensive efforts to collect and conserve maize 
landraces since the 1940s, many unnamed races have already 
disappeared (Curry 2022). This loss of genetic diversity has 
highlighted the urgent need for landrace conservation 
(Monroy-Sais et al. 2024).  

One of the most extensive collections of maize landraces 
is maintained at the Wellhausen-Anderson Maize Genetic 
Resource Centre at CIMMYT in Mexico, which holds over 
27,000 maize accessions from 64 countries, representing 
approximately 90% of the maize diversity in the Americas 
(Wen et al. 2011). In India, the National Bureau of Plant Genetic 
Resources (NBPGR) conserves nearly 9,000 maize accessions, 
primarily from the North Eastern Himalayan (NEH) region 
and Northern West Bengal. Of these, approximately 60% 
consist of landraces and populations.  

Recognizing the significance of maize landraces, a 
segmented seed system that integrates both improved 
landraces and modern maize hybrids has been proposed 
(Hellin et al. 2014). Under this model, the public and private 
sectors would continue to provide improved maize varieties. 
At the same time, other stakeholders, including farmers, 
could produce and distribute seeds of improved landraces 
for sale and exchange. In countries such as Costa Rica 
and Honduras, farmers have shown a strong preference 
for hybridizing improved maize varieties with landraces 
(Almekinders et al. 1994). This hybridization process, known 
as ‘creolization,’ has resulted in the development of ‘Criollo’ 
varieties, which provide smallholder farmers with access to 
both modern genetic advancements and local adaptation 
benefits without requiring annual seed purchases (Bellon 
and Risopolous 2001).  

Maize diversity in the Indian Himalayas
Grant and Wellhausen (1955) conducted studies on maize 
landrace diversity in India, revealing substantial variability 
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Table 1. List of important landraces from different countries which have been used in breeding programs as a source of tolerance to different 
biotic and abiotic stresses, nutritional quality and special traits

Name of the landrace(s) Country of origin Traits Reference(s)

Nal-tel, Chapalote, and Palomero Mexico Resistance to maize weevil (Sitophilus 
zeamais) 

Arnason 1994

Michoacan-21 Mexico Drought tolerance due to presence of 
latente gene

Sharma 2005

GalTrini, SITexas, and Tuxpeño Sequia Mexico Drought tolerance Gonzalez-Hernandez 
et al. 2021

San Martin-105 and San Martin-119 Peru Presence of Multiple Aleurone Layer 
(MAL); higher accumulation of 
essential minerals such as iron and 
zinc

Lim and Yi 2019; 
Paulsmeyer and Juvik 
2023

Coroico South America Presence of Multiple Aleurone Layer; 
higher accumulation of essential 
minerals such as iron and zinc

Wolf et al. 1972

Burr’s White United States of America High protein, oil, and fatty acid 
content 

Hopkins 1899; Dudley 
and Lambert 2004

TZm1162, TZm1167, TZm1472, and TZm1508 Nigeria Tolerance to drought and heat stress Nelimor et al. 2020

Lvda Red Cob China Disease and lodging resistance, 
high combining ability, and broad 
adaptability 

Zhao et al. 2022

Poorvi Betapa, Arun Tepi, Murli, Tirap Nag-
Sahypung, and Alok Sapa

India Popcorn Kumar et al. 2015

Mimban India Waxyness (high amylopectin) Rathod et al. 2019

Sikkim Primitive (Murali Makai) India High prolificacy Prakash et al., 2021

Gurez local India Cold tolerance Ramazan et al. 2023

in the North Eastern Himalayan (NEH) region and the North-
Western Highlands. The NEH region serves as a rich reservoir 
of maize landrace diversity, offering adaptability to a wide 
range of agro-climatic conditions. At Punjab Agricultural 
University (PAU), Ludhiana, a composite variety named 
‘Parbhat’ was developed using Suwan-1, a well-known 
open-pollinated variety (OPV) from Thailand. This variety 
exhibits high yield potential, stable performance, and 
resistance to multiple diseases (Dhillon and Prasanna 2001; 
Dhillon et al. 2002).  

Similarly, ICAR-Vivekananda Parvatiya Krishi Anusandhan 
Sansthan (VPKAS), Almora, has developed hybrids’ Him-128’ 
and ‘Him-129’ by utilizing various landraces from Jammu & 
Kashmir and Uttarakhand (Prasanna et al. 2010). Additionally, 
Govind Ballabh Pant University of Agriculture & Technology 
(GBPUAT), Pantnagar, has developed an OPV named ‘Pant 
Composite Makka-4’ using popular maize landraces (DLR-1, 
DLR-2, and DLR-3) collected from Uttarakhand.  

Maize landrace diversity in North-Eastern 
Himalayas 
The remarkable diversity of maize in the Indian Himalayan 
region has led to speculation that maize may have originated 
in Asia (Anderson 1941). While it is widely believed that maize 
was introduced to the Old World following Columbus’s 

discovery of America (Mir et al. 2013), the genetic and 
morphological diversity of Himalayan landraces, particularly 
those adapted to the North Eastern Himalayan (NEH) region, 
challenges this notion. Some researchers suggest a pre-
Columbian introduction, supported by mentions of maize 
grains in Vedic literature (Randhawa 1980; Singh et al. 2022). 
Additionally, a few ancient Indian and Chinese texts dating 
back to the 5th and 13th centuries AD, respectively, indicate 
an early presence of maize prior to Portuguese influence. 
The carvings of maize-like structures on Hoysala temple 
sculptures in Karnataka are also cited as potential evidence, 
though this remains debated.  

Despite the limited historical literature on maize 
cultivation in the Indian subcontinent, studies on the distinct 
heterochromatic knobs of NEH landraces differentiate them 
from New World maize genotypes. Instead, these landraces 
resemble Mexican teosinte and primitive maize germplasm 
from the Caribbean and Andean highlands, suggesting a 
pre-Columbian introduction followed by its spread across 
Southeast Asia (Kumar and Sachan 1993; Prasanna and 
Sharma 2005).  

The maize landrace Sikkim Primitive was first collected 
by N.L. Dhawan in the 1960s, who designated it as Sikkim 
Primitive (Dhawan 1964). This primitive maize group, 
primarily consisting of various popcorn races, is widely 
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distributed across the Eastern Himalayan region (Kumar 
et al. 2015). Examples include Poorvi Betapa, Arun Tepi, 
Murli, Tirap Nag-Sahypung, and Alok Sapa (Kumar et al. 
2015). The prevalence of popcorn types, high prolificacy, 
and drooping tassel traits in most NEH landraces indicates 
primitive characteristics, distinct from the widely introduced 
New World flint-maize genotypes.  

The presence of waxy maize traits in Southeast Asia, 
including the NEH region, is atypical of New World flint and 
dent maize but resembles Aegean (Greek) maize varieties. 
This suggests an ancient trans-Atlantic introduction from 
the Americas to the Mediterranean, followed by a spread 
through the Silk Route to Southwest China, and subsequently 
into Southeast Asia due to favorable ecological conditions 
(Anderson and Brown 1952; Sorenson and Johannessen 
2004). Furthermore, the discovery of maize cobs in ancient 
tombs in China’s Sichuan province, along with the rich 
maize diversity in the Himalayan highlands—including 
China, India, Nepal, Bhutan, and Myanmar—supports the 
hypothesis of a trans-Pacific introduction, making Asia a 
potential convergence point for both trans-Atlantic and 
trans-Pacific maize dispersal (Anderson and Brown 1952).  

Several NEH landraces have been extensively collected 
and studied by researchers both before and after India’s 
independence (Anderson 1945; Stonor and Anderson 1949; 
Ono and Suzuki 1956; Dhawan 1964; Thapa 1966; Singh 1977; 
Sachan and Sarkar 1982; Sharma et al. 2010; Rahman and 
Karuppaiyan 2011; Kumari et al. 2017; Sharma and Pradhan 
2023). NEH maize landraces have been characterized at 
the morphological and molecular levels (Prasanna 2010). 
Using isozyme markers, Bhat and Chandel (1998) revealed 
similarities between Indian maize landraces cultivated in 
the NEH region and Mexican landraces. Baruah et al. (2024) 
documented extensive genetic diversity among 83 NEH-
based maize landraces for various morphological traits 
and biochemical parameters, including anthocyanins and 
phlobaphenes.  

Additionally, phenotypic and molecular analyses were 
conducted on 132 maize landraces, including 69 accessions 
from eight NEH states (Prasanna and Sharma 2005). Prasanna 
et al. (2005) provided the first comprehensive molecular 
characterization of 27 Indian maize landraces from various 
agro-ecological zones, 10 of which were from the NEH 
region. Sharma et al. (2010) later characterized 48 landraces, 
including Sikkim Primitive, for prolificacy using SSR markers 
and a population bulk DNA fingerprinting approach. Further 
SSR-based diversity studies were carried out on 48 selected 
NEH landraces (Singode and Prasanna 2010). Natesan et al. 
(2020) characterized 26 maize landraces from the NEH region 
for the crtRB1 gene using a gene-based marker and identified 
10 landraces possessing the favorable crtRB1 allele, marking 
them as rich sources of provitamin A.  

Sikkim Primitives: A unique maize landrace of NEH
Of the various landraces from North Eastern Himalayan 
region, landraces from Sikkim province have raised special 
interest among maize breeders. The most important 
maize landraces of Sikkim include ‘Murali Makkai’, ‘Seti 
Makkai’, ‘Pahenlo Makkai’, ‘Rato Makkai’, ‘Baiguney Makkai’, 
‘Lachung Makkai’, ‘Sherung’, ‘Tempo Rinzing’, ‘Garberey’, 
‘Khukurey’, ‘Kalo Makkai’, ‘Putali Makkai’, ‘Chaptey Makkai’, 
‘Kuchungtakmar Makkai’, ‘Bancharey Makkai’, ‘Kuchungdari’ 
and ‘Gadbade Makkai’ (Prasanna 2010). Among these, 
Sikkim Primitive, also known as Murali Makkai, is  distinct, 
exclusively used for commercial offerings by the Buddhist 
community in the area (Dhawan 1964). Two accessions, 
viz., Sikkim Primitive-1 (purple grains) and Sikkim Primitive-2 
(yellow grains), were first collected in the 1960s from Sikkim 
(Dhawan 1964). It grows at mid-elevations of 2000 to 2700 m 
in the humid tropical cloud forest of Sikkim and is believed 
to be a primitive form of ancestral maize. The key features of 
the Sikkim Primitive include 7-9 ears per plant compared to 
1-2 ears per plant in modern maize (Sachan and Sarkar 1982). 
It also lacks apical dominance and possesses uniformity in 
ear size, popcorn-type kernels, and tall plants with drooping 
tassels for effective fertilization (Figure 1). Sikkim Primitive 
also possesses relatively thin but strong culms, synchronous 
growth and maturity of all ears, and photo-sensitivity 
(Anderson 1945; Singh 1977). The ears of the Sikkim Primitive 
are small, thin and cylindrical, occasionally tapering, 
measuring between 6 to 12 cm in length, featuring 8 to 12 
irregular rows with small popcorn-type kernels (Singode and 
Prasanna 2010). A detailed account of the morphological 
difference between Sikkim Primitive landrace, modern maize 
inbreds and teosinte is given in Table 2.

Genetic dissection of prolificacy in Sikkim Primitive
The Sikkim Primitive landrace has been extensively 
analyzed at the morphological, cytological, and molecular 
levels. Notably, its morphological characteristics suggest 
a closer relationship with maize (Sachan and Sarkar 1982). 
This landrace was categorized as ‘primitive’ due to its high 
prolificacy, sensitivity to photoperiod, small popcorn-type 
grains, and significant pollen production. Kapoor et al. (2022) 
recently conducted morphological trait characterization 
of Sikkim Primitive, while Pandey et al. (1986) investigated 
variations in heterochromatin among its chromosomes. 
Additionally, Kumar and Sachan (1996) evaluated genetic 
diversity in pachytene knobs among 41 maize landraces 
from the NEH region, including Sikkim Primitive. Although 
discovered in the 1960s, the genetic basis of prolificacy in 
Sikkim Primitive remained unclear for decades, largely due 
to its heterogeneous nature, a common characteristic of 
cross-pollinated crops like maize.

The prolificacy in Sikkim Primitive results from multiple 
developmental modifications in maize, including axillary 
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Table 2. Major morphological differences between Maize, Teosinte, and Sikkim Primitive landrace

S. No. Trait Maize Teosinte Sikkim Primitive 

1. Tillering habit Absent Present, bushy habit Absent

2. Primary branch Shortened, internodal 
length is highly reduced, 
leaves developed into cob 
sheath, Tipped by female 
inflorescence (ear).

As main culm, tipped 
by male inflorescence 
(tassel)

Shortened, internodal length is highly 
reduced, leaves developed into cob sheath 
and covering the female inflorescence 
(ear). Sometime tip of inflorescence is male 
(tassel) and it leads to self-fertilization.

3. Secondary branch Not present Developed as female 
inflorescence (ear)

Not present

4. Number of ears per plant 1-2 20-100 7-9

5. Number of seeds per ear 100-400 8-10 100-200

6. Presence of cupulate (stony) 
fruit case over seeds

Not present (naked kernel) Present Not present 
(naked kernel)

7. Paired spikelet Present Absent Present

8. No. of rows of kernel 4-7 paired rows 
(10-14 rows) (polystichous)

1 pair rows 
(2 rows) (distichous)

4-7 paired rows 
(10-14 rows) (polystichous)

9. 100-Kernel Weight 20-30 g 6-8 g 9-10 g

bud initiation and maintenance, transformation of these 
buds into primary branches, and the subsequent conversion 
of primary branches into female inflorescences (Prakash et al. 
2019). Several physiological, metabolic, and environmental 
interactions regulate this process, with crucial factors such as 
nutrient availability, hormonal equilibrium at nodes, auxin-
cytokinin ratios, strigolactone signaling, physiological stress 
responses (drought, heat, salinity), cell cycle regulation, 

light exposure, source-sink balance, and crop density 
playing significant roles (McSteen et al. 2000; Eveland et 
al. 2010; Kebrom and Brutnell 2007; Prasanna 2010). Given 
the importance of understanding these factors, research 
at ICAR-Indian Agricultural Research Institute (IARI), New 
Delhi, led to the development of an inbred line (MGUSP-101) 
through repeated selfing of Sikkim Primitive (IC-565866). 
MGUSP-101 retains the original landrace’s high prolificacy 

Fig. 1. A. Plant architecture of Sikkim Primitive (MGUSP-101) grown at Delhi, B. Ear and grain characteristics of Sikkim Primitive (MGUSP-101) and 
its comparison with ears of inbred and hybrid 



November, 2025]	 An overview of maize landraces of the North-Eastern Himalayan region of India	 541

and popcorn kernel traits.
In teosinte, a species known for its prolificacy and ability 

to produce over 50 small ears per plant, the tb1 gene has 
been linked to branching regulation (Studer et al. 2011). 
Tb1 encodes a TCP (Teosinte branched1 of maize; Cycloidea 
of snapdragon; Proliferating cell nuclear antigen factor1 and 
2 of rice) domain transcription factor involved in meristem 
growth, floral primordia initiation, and cell cycle regulation 
(Cubas et al. 1999; Lukens and Doebley 2001). Functioning as 
the master regulator of plant and inflorescence architecture, 
tb1 codes for a bHLH DNA-binding protein with three 
conserved domains (Lukens and Doebley 2001). It suppresses 
axillary bud growth along the main stem, influencing female 
inflorescence formation in maize (Doebley 2004). Unlike 
teosinte, maize exhibits higher tb1 expression, leading to 
reduced branching due to the presence of an approximately 
12 kb enhancer region (~58-69 kb upstream of the tb1 
coding sequence) (Doebley et al. 1997; Clark et al. 2006). 
Maize-specific insertions of Hopscotch (~58-64 kb) and 
Tourist (~64-69 kb) retrotransposons within this enhancer 
region distinguish it from teosinte (Zhou et al. 2011; Studer 
and Doebley 2012; Vann et al. 2015).

To determine whether tb1 variation contributes to Sikkim 
Primitive’s prolificacy, sequencing of the tb1 gene in MGUSP-
101, five maize inbreds (LM17, HKI1128, BML7, UMI1200, and 
CML425), and four teosinte accessions (parviglumis, perennis, 
luxurians, and mexicana) was performed (Prakash et al. 2020). 
Results showed that the Hopscotch and Tourist transposable 
elements were present in maize inbreds, including MGUSP-
101, but absent in wild relatives. This indicated that an 
alternative regulatory mechanism beyond tb1 might govern 
prolificacy in Sikkim Primitive (Prakash et al. 2020).

Further investigation through genetic analysis of 
crosses between MGUSP‐101 and four non‐prolific inbreds 
(LM13, BML7, HKI161, and HKI1128) revealed a quantitative 
inheritance pattern with duplicate epistasis-type non‐
allelic interactions. Dominance × dominance effects were 
more pronounced than additive × additive and additive × 
dominance effects. Major gene block analysis suggested the 
presence of at least one significant gene/QTL influencing 
prolificacy (Prakash et al. 2019). Additional F2:3 mapping 
populations were developed by crossing MGUSP-101 with 
two non-prolific inbreds, HKI1128 and UMI1200, leading 
to the identification of a major QTL (bin: 8.05) explaining 
31.7% and 29.2% of phenotypic variation, respectively. This 
novel QTL was designated as ‘qProl-SP-8.05’ (Prakash et al. 
2021). Unlike the previously reported QTL, prol1.1, located 
on chromosome 1, which contributed to multiple ears from 
a single node (Wills et al. 2013), the qProl-SP-8.05 QTL was 
associated with ear development at each node in Sikkim 
Primitive.

To further elucidate the genetic framework of Sikkim 
Primitive, whole-genome sequencing was conducted 

on MGUSP-101 along with three non-prolific (HKI1128, 
UMI1200, and HKI1105) and three prolif ic (CM150Q, 
CM151Q, and HKI323) inbreds (Prakash et al. 2024). This 
analysis identified 942,417 SNPs, 24,160 insertions, and 
27,600 deletions. Functional classification of gene-specific 
mutations in Sikkim Primitive revealed 10,847 missense 
(54.36%), 402 nonsense (2.015%), and 8,705 silent (43.625%) 
mutations. The landrace exhibited 666,021 transitions 
and 279,950 transversions, with (G to A) being the most 
frequent (215,772) and (C to G) the rarest (22,520). Notably, 
unique alleles were identified in the gene encoding 
polygalacturonate-4-α-galacturonosyltransferase,  an 
enzyme linked to pectin biosynthesis, cell wall organization, 
and sugar metabolism. Additionally, Zm00001eb365210, 
encoding glycosyltransferases, emerged as the potential 
candidate gene underlying ‘qProl-SP-8.05’ for prolificacy in 
Sikkim Primitive. High-impact nucleotide variations were 
detected in ramosa3 (Zm00001eb327910) and zeaxanthin 
epoxidase1 (Zm00001eb081460), genes implicated in 
branching and inflorescence development (Prakash et al. 
2024). These candidate genes are currently being validated 
and introgressed into elite maize lines at IARI, New Delhi, to 
enhance prolificacy traits.	

Way forward
Despite the presence of ample genetic diversity in maize 
landraces found in NEH regions, their utilization in maize 
breeding is still a major bottleneck. A strong pre-breeding 
activity needs to be initiated for derivation of homozygous 
genetic stocks with the unique trait(s) specific to each of 
the landraces. DH technology should be intensively utilized 
to derive homozygous inbreds from each of the unique 
landraces. Inheritance study followed by identification 
of locus (loci) underlying a particular trait needs to be 
undertaken systematically. Validation of gene(s) followed 
by its introgression through molecular breeding would 
accelerate the genetic improvement in maize. 
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