# Genetic divergence in 3 and 4 year old genotypes of physic nut [*Jatropha curcas* (L.)]

## T. C. Bochalya and B. R. Ranwah\*

Department of Plant Breeding and Genetics, Rajasthan College of Agriculture, MPUAT, Udaipur 313 001

(Received: December 2011; Revised: November 2012; Accepted: December 2012)

#### Abstract

Fifty six germplasm lines of physic nut collected from Aravali hills of Southern Rajasthan were assessed for 26 characters recorded for two consecutive years during 2007 and 2008 on 3 and 4 year old plants. The values of V statistics were 12040 and 10950 in first and second year, respectively which showed significant difference between the genotypes over the characters. The two year values indicated that sufficient diversity was present among the 56 genotypes of physic nut. The 56 genotypes were grouped into 8 clusters using Euclidean<sup>2</sup> values of 500 and 285 in the third and fourth year, respectively. The composition of clusters was slightly different in different years. With changing the age, genotypes also changed their cluster but most of the genotypes moved together and found place in one cluster. There was no relationship between genetic diversity and geographic distance. The contribution of vegetative characters towards genetic divergence was negligible. The characters like seed content, 100-seed weight, number of female flowers per inflorescence, oil content, kernel: shell ratio and weight per fruit were main contributors to total divergence. Cluster III and VIII in 3rd year and cluster VI and VIII in 4<sup>th</sup> year had maximum inter cluster distances. Cluster IV in 3<sup>rd</sup> year and cluster VIII in 4<sup>th</sup> year had highest mean values for maximum number of characters. Based on above results ARV-036 X ARV-020 and ARV-036 X ARV-023 are recommended for hybridization, as these genotypes showed good per se performance for seed yield and oil content and belong to the highly diverse clusters.

**Key words:** Genetic divergence, jatropha, Euclidean<sup>2</sup> distance, germplasm lines

#### Introduction

Jatropha curcas L. is considered as good renewable source of energy. Its oil can be directly used as fuel because of unique fatty acid composition. It is the hardiest plant having high degree of adaptability ranging from tropical to subtropical climate [1]. It is highly cross-pollinated plant due to monoecious flowers. The genome of Jatropha curcas is relatively of small size. The karyotype of *J. curcas* is made up of 22 relatively small metacentric and submetacentric chromosomes whose size range from 1.21 to 1.24 µm [2]. It is commonly grown as a live fence around agricultural fields as it can be easily propagated, quick growing, less input demanding, not browsed by animals, does not harbour the crop damaging insects, tolerant to dry weather conditions and have wider adaptability. It is an environmentally safe and cost effective source of energy. Promotion of it as non-conventional source of energy will be boon for the society in the global context of increasing energy needs, spiralling prices of petroleum products and depleting petroleum reserves. It will also save the foreign exchange of the country and would be good source of income for the farmers [3]. There are no prominent varieties and the yield potential of present cultivars is very low. Therefore, intensive research is required for improving the seed yield and oil content. As it is a cross-pollinated and vegetatively propagated crop the hybrids can be developed using suitable parents for exploitation of heterosis. For identification of suitable parents genetic divergence is one of the important tool. In view of this, the present investigation was conducted to assess genetic divergence in jatropha genotypes of Southern Rajasthan at the age of 3 and 4 years.

## Materials and methods

The stem cuttings of 56 selected plants collected from different locations of the Aravali hills of southern Rajasthan were planted at the Instructional Farm of

\*Corresponding author's e-mail: brranwah@yahoo.com

Published by Indian Society of Genetics & Plant Breeding, F2, First Floor, NASC Complex, PB#11312, IARI, New Delhi 110 012 Online management by indianjournals.com Horticulture, Rajasthan College of Agriculture, Udaipur. The selection of plants was done based on area, location and density of plants in the area. More samples were taken from area having high density of plants. The experimental design was Completely Randomized Design (CRD) with 5 replications. Observations were recorded on five normal appearing plants of 3 and 4 year age stages for 26 vegetative, reproductive and quality characters during 2007 and 2008. Genetic divergence was measured by squared Euclidean distance [4].

### **Results and discussion**

The values of V statistics were 12040 and 10950 at 3 and 4 year age of the plants, respectively. It showed significant difference between the genotypes over the characters and indicate significant diversity among the 56 genotypes of physic nut. The genetic divergence in Jatropha curcas has also been reported by Kaushik et al. [5], Rao et al. [6], Das et al. [7] and Sunil et al. [8]. The studies on genetic diversity at morphological and molecular level in Jatropha curcus populations has also revealed moderate to high magnitude of divergence with a wide genetic base in India [9] and abroad [10, 11]. The 56 genotypes were grouped into 8 clusters in both the years using 500 and 285 Euclidean<sup>2</sup> distance as cut of point, respectively. However, composition of clusters was slightly different in different years. At 3 year age, cluster I contained maximum number of genotypes i.e., 19 followed by 8 in cluster IV and VII, 6 in cluster II, 5 in cluster III and VIII, 4 in cluster V and 1 in cluster VI. At 4 year age, cluster V contained maximum number of genotypes i.e., 16 followed by 11 in cluster VI, 6 in cluster IV, 5 in cluster VIII, 4 in cluster I, 3 in cluster II and 1 in cluster III. The comparison of clusters and relative position of genotypes can be more clearly depicted through Ward's minimum variance dendrograms (Figs. 1&2). At age 3 and 4 year genotypes formed different clusters but, most of the genotypes moved together and found place together in one cluster (Table 1). The distribution of



Fig. 1. Ward's minimum variance dendrogram at 3 year age



Fig. 2. Ward's minimum variance dendrogram at 4 year age

| S No. | Cluster at |        | Common genotypes                                                                                                                  |
|-------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------|
|       | 3 year     | 4 year |                                                                                                                                   |
| 1     | I          | V      | ARV-076, ARV-058, ARV-055, ARV-050, ARV-062, ARV-039, ARV-005, ARV-081, ARV-<br>072, ARV-073, ARV-071, ARV-045, ARV-074 & ARV-011 |
| 2     | Ш          | IV     | ARV-065, ARV-030, ARV-034, ARV-032 & ARV-063                                                                                      |
| 3     | Ш          | VII    | ARV-017, ARV-018 & ARV-019                                                                                                        |
| 4     | Ш          | Ш      | ARV-014 & ARV-016                                                                                                                 |
| 5     | IV         | VIII   | ARV-020, ARV-021, ARV-022 & ARV-023                                                                                               |
| 6     | V          | VII    | ARV-078 & ARV-079                                                                                                                 |
| 7     | VII        | I      | ARV-001, ARV-009 & ARV-010                                                                                                        |
| 8     | VII        | VI     | ARV-008, ARV-048 & ARV-066                                                                                                        |
| 9     | VIII       | VIII   | ARV-031, ARV-033, ARV-035, ARV-036 & ARV-067                                                                                      |

Table 1. Genotypes clustered together at 3 and 4 year age

genotypes in different clusters revealed that geographical distances between the genotypes had no relation with the genetic divergence as the genotypes from nearby places were placed into different clusters as well as the same clusters contained genotypes from distant places. The similar results were also reported in groundnut [12, 13]. The Euclidean<sup>2</sup> distances were used to depict intra and inter cluster distances. At 3 year age, intercluster values were maximum between cluster III and VIII (1111.89) and minimum between clusters III and IV (416.87). The intra-cluster Euclidean<sup>2</sup> value was maximum in cluster II (427.29) followed by cluster VII (382.54), V (372.89), VIII (335.94), IV (263.38), I (256.32) and III (202.27) (Table 2). At 4 year age, inter

 Table 2.
 Average intra and inter cluster Euclidean<sup>2</sup> distances at 3 year age

| Clusters | I      | II     | 111    | IV     | V      | VI      | VII     | VIII    |
|----------|--------|--------|--------|--------|--------|---------|---------|---------|
| I        | 256.33 | 441.85 | 468.29 | 438.58 | 466.83 | 769.50  | 544.90  | 626.56  |
| II       |        | 427.29 | 625.76 | 495.40 | 754.83 | 932.82  | 948.46  | 720.68  |
| III      |        |        | 202.27 | 416.87 | 497.26 | 1019.38 | 896.41  | 1111.89 |
| IV       |        |        |        | 263.38 | 639.85 | 1021.00 | 1007.34 | 1090.11 |
| V        |        |        |        |        | 372.89 | 808.46  | 602.31  | 974.14  |
| VI       |        |        |        |        |        | 0.00    | 779.72  | 890.11  |
| VII      |        |        |        |        |        |         | 382.55  | 703.16  |
| VIII     |        |        |        |        |        |         |         | 335.94  |

| Table 5. Average initia and initer cluster Euclidean distances at 4 year a | Table 3. | Average intra a | and inter cluster | Euclidean <sup>2</sup> | distances at 4 | 1 year | age |
|----------------------------------------------------------------------------|----------|-----------------|-------------------|------------------------|----------------|--------|-----|
|----------------------------------------------------------------------------|----------|-----------------|-------------------|------------------------|----------------|--------|-----|

| Clusters | I      | II     | III    | IV     | V      | VI     | VII    | VIII   |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| I        | 165.69 | 324.60 | 482.18 | 494.35 | 282.74 | 415.49 | 411.66 | 562.73 |
| II       |        | 224.27 | 467.12 | 443.79 | 357.89 | 451.88 | 395.04 | 627.70 |
| III      |        |        | 0      | 504.46 | 443.00 | 651.69 | 541.69 | 510.38 |
| IV       |        |        |        | 189.92 | 239.46 | 333.31 | 328.47 | 350.62 |
| V        |        |        |        |        | 151.49 | 286.48 | 277.08 | 333.60 |
| VI       |        |        |        |        |        | 212.84 | 524.06 | 664.01 |
| VII      |        |        |        |        |        |        | 202.94 | 298.21 |
| VIII     |        |        |        |        |        |        |        | 201.14 |

cluster values were maximum between clusters VI and VIII (664.01) and minimum between clusters IV and V (239.46). The intra-cluster Euclidean<sup>2</sup> value was maximum in cluster II (224.27) followed by cluster VI (212.84), VII (202.94), VIII (201.14), IV (189.92), I (165.69) and V (151.49) (Table 3).

The characters contributed more towards divergence at 3 year age also contributed high at 4 year age. These were seed content, 100-seed weight, number of female flowers per inflorescence, oil content, kernel: shell ratio, weight per fruit, number of male flowers per secondary branch, acid value and iodine

 Table 4.
 Contribution (%) of characters to total divergence

| S.N | o. Characters                        | Contribution (%)    |                     |  |  |  |
|-----|--------------------------------------|---------------------|---------------------|--|--|--|
|     |                                      | at 3<br>year<br>age | at 4<br>year<br>age |  |  |  |
| 1   | Plant height                         | 0.00                | 0.00                |  |  |  |
| 2   | Stem girth                           | 0.00                | 0.00                |  |  |  |
| 3   | Number of primary branches/plant     | 0.00                | 0.00                |  |  |  |
| 4   | Number of fruiting branches/plant    | 0.00                | 0.00                |  |  |  |
| 5   | Number of flushes per fruiting brand | h 0.00              | 0.00                |  |  |  |
| 6   | Number of fruits per fruiting branch | 0.00                | 0.00                |  |  |  |
| 7   | Petiole length                       | 0.06                | 0.00                |  |  |  |
| 8   | Area of fully matured leaf           | 0.58                | 0.00                |  |  |  |
| 9   | Diameter of fruiting branch          | 0.00                | 0.00                |  |  |  |
| 10  | No. of primary branches/inflorescen  | ce 1.23             | 3.00                |  |  |  |
| 11  | No. of secondary br./inflorescence   | 0.00                | 2.00                |  |  |  |
| 12  | No. of male flowers/secondary bran   | ch 4.74             | 5.00                |  |  |  |
| 13  | No. of female flowers/secondary br.  | 0.00                | 2.00                |  |  |  |
| 14  | No. of female flowers/inflorescence  | 9.16                | 10.00               |  |  |  |
| 15  | Ratio of male to female flowers      | 0.06                | 2.00                |  |  |  |
| 16  | Fruit diameter                       | 0.00                | 1.00                |  |  |  |
| 17  | Weight per fruit                     | 6.75                | 2.00                |  |  |  |
| 18  | Seeds per fruit                      | 0.00                | 0.00                |  |  |  |
| 19  | 100 Seed weight                      | 27.01               | 15.00               |  |  |  |
| 20  | Fruit yield per plant                | 0.00                | 0.00                |  |  |  |
| 21  | Seed yield per plant                 | 5.97                | 0.00                |  |  |  |
| 22  | Seed content                         | 11.17               | 32.00               |  |  |  |
| 23  | Kernel : shell ratio                 | 15.45               | 4.00                |  |  |  |
| 24  | Oil content                          | 10.45               | 9.00                |  |  |  |
| 25  | Acid value                           | 2.86                | 6.00                |  |  |  |
| 26  | lodine value                         | 4.48                | 5.00                |  |  |  |

value. The contributions of these characters were 92.07 and 88.00 percent at 3 and 4 years of age, respectively (Table 4). The genotypes having high mean values for these characters found places in five clusters in both the years. At 3 year age cluster IV had maximum mean values for weight per fruit, 100-seed weight, seed yield per plant, seed content, kernel: shell ratio and oil content and cluster VI for acid value and iodine value. Similarly cluster II, III and VII for number of primary branches per inflorescence, number of female flowers per inflorescence and number of male flowers per secondary branch, respectively (Table 5). At 4 year age cluster VIII had highest mean values for number of primary branches per inflorescence, 100-seed weight, seed yield per plant and kernel: shell ratio, cluster II for number of female flowers per inflorescence and iodine value and cluster III for number of male flowers per secondary branch and acid value. Similarly, cluster VII had highest mean value for seed content and oil content and cluster IV for weight per fruit (Table The genotypes with high mean values for 100-seed weight, seed yield per plant and kernel: shell ratio moved together and found place in cluster IV and VIII at 3 and 4 year age, respectively. The characters having maximum mean values in cluster IV and VIII was 76.8 and 22.0 per cent at 3 and 4 year of age, respectively. The low contribution of these characters in second year was on account of shifting of genotypes with higher seed content in cluster VII and increase of contribution of this character from 11.17 in first year to 32 per cent in second year. The mean value of these characters may also be considered while selecting the diverse genotypes. The genetic divergence was less dependent on vegetative characters like plant height, stem girth, number of primary branches per plant, number of fruiting branches per plant, petiole length, area of fully matured leaf and diameter of fruiting branch as contribution of these characters was very low.

The maximum inter cluster distance was between cluster III and VIII at 3 year age and between cluster VI and VIII at 4 year age. In first year ARV-017 and ARV-019 in cluster III and ARV-035 and ARV-036 in cluster VIII and in second year ARV-036, ARV-041 and ARV-035 in cluster VI and ARV-020, ARV-021 and ARV-023 in cluster VIII showed high *per se* performance for seed yield. The best performing genotypes ARV-021 and ARV-023 clustered in cluster IV at 3 year age and in VIII at 4 year age. The cluster IV showed second highest inter-cluster distance from the cluster VIII at 3 year age. Further ARV-036 showed

| Cluster     | Plant<br>height                                 | Stem<br>girth                 | No. of<br>primary<br>branches/<br>plant | No. of<br>fruiting<br>branches,<br>plant          | No. of<br>flushes/<br>/ fruiting<br>branch          | No. of<br>fruits/<br>fruiting<br>branch | Petiole<br>length                        | Area of<br>full<br>matured<br>leaf | Diameter of<br>fruiting<br>branch |
|-------------|-------------------------------------------------|-------------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------|-----------------------------------|
| I           | 1.533                                           | 18.75                         | 3.326                                   | 8.800                                             | 1.097                                               | 2.763                                   | 10.912                                   | 130.572                            | 1.499                             |
| II          | 1.518                                           | 17.82                         | 3.400                                   | 5.700                                             | 1.189                                               | 2.542                                   | 11.892                                   | 132.963                            | 1.567                             |
| III         | 2.087                                           | 22.75                         | 3.400                                   | 14.760                                            | 1.288                                               | 3.802                                   | 11.490                                   | 123.742                            | 1.564                             |
| IV          | 2.404                                           | 24.36                         | 3.400                                   | 13.000                                            | 1.242                                               | 4.234                                   | 13.529                                   | 128.135                            | 1.413                             |
| V           | 1.130                                           | 15.43                         | 3.500                                   | 6.200                                             | 1.350                                               | 2.720                                   | 11.214                                   | 126.940                            | 1.549                             |
| VI          | 1.150                                           | 15.08                         | 2.400                                   | 2.800                                             | 1.240                                               | 3.366                                   | 9.408                                    | 125.590                            | 1.610                             |
| VII         | 1.561                                           | 18.95                         | 3.400                                   | 10.625                                            | 1.140                                               | 2.733                                   | 9.196                                    | 116.869                            | 1.508                             |
| VIII        | 2.129                                           | 23.29                         | 3.960                                   | 12.640                                            | 1.337                                               | 3.644                                   | 14.455                                   | 144.320                            | 1.443                             |
| Probability | 0.000                                           | 0.002                         | 0.372                                   | 0.124                                             | 0.018                                               | 0.010                                   | 0.000                                    | 0.022                              | 0.187                             |
| Cluster     | No. of<br>primary<br>branches/<br>inflorescence | No<br>secc<br>brar<br>inflore | o. of<br>ondary<br>hches/<br>escence s  | No. of<br>male<br>flowers/<br>secondary<br>branch | No. of<br>female<br>flowers/<br>secondary<br>branch | No. of<br>flowers/<br>inflorescend      | Ratio o<br>male t<br>ce femalo<br>flower | of Fruit<br>o diamet<br>e<br>s     | t Weight<br>ter per fruit         |
|             | 2.046                                           | 7.                            | 469                                     | 21.454                                            | 1.349                                               | 11.269                                  | 16.80                                    | 6 2.036                            | 6 2.256                           |
| II          | 2.187                                           | 7.                            | 597                                     | 19.242                                            | 1.497                                               | 11.015                                  | 13.43                                    | 6 2.074                            | 4 2.511                           |
| III         | 2.016                                           | 7.                            | 364                                     | 19.596                                            | 1.716                                               | 20.156                                  | 11.45                                    | 2.080                              | 0 2.410                           |
| IV          | 2.010                                           | 7.                            | 793                                     | 22.705                                            | 1.320                                               | 12.349                                  | 18.18                                    | 7 2.03                             | 5 2.528                           |
| V           | 2.040                                           | 7.                            | 515                                     | 16.763                                            | 1.523                                               | 13.875                                  | 11.34                                    | 6 2.074                            | 4 2.192                           |
| VI          | 2.000                                           | 7.                            | 400                                     | 18.500                                            | 1.520                                               | 13.100                                  | 12.17                                    | 4 1.852                            | 2 1.648                           |
| VII         | 2.053                                           | 7.                            | 461                                     | 23.461                                            | 1.544                                               | 13.967                                  | 15.33                                    | 8 2.002                            | 2 1.953                           |
| VIII        | 2.020                                           | 7.                            | 730                                     | 21.700                                            | 2.164                                               | 13.098                                  | 10.36                                    | 0 2.042                            | 2 2.410                           |
| Probability | 0.335                                           | 0.                            | 571                                     | 0.080                                             | 0.002                                               | 0.000                                   | 0.000                                    | 0.032                              | 2 0.000                           |
| Cluster     | Seeds/<br>fruit                                 | 100<br>seed<br>weight         | Fruit yield<br>per plant                | Seed<br>yield/<br>plant                           | Seed<br>content                                     | Kernel :<br>shell<br>ratio              | Oil<br>content                           | Acid<br>value                      | lodine<br>value                   |
| I           | 2.882                                           | 57.284                        | 74.584                                  | 50.091                                            | 66.901                                              | 1.382                                   | 33.185                                   | 6.419                              | 109.897                           |
| II          | 2.807                                           | 67.913                        | 53.851                                  | 33.887                                            | 63.720                                              | 1.428                                   | 33.815                                   | 6.389                              | 101.893                           |
| III         | 2.944                                           | 64.765                        | 92.509                                  | 65.978                                            | 71.237                                              | 1.409                                   | 34.982                                   | 7.434                              | 113.174                           |
| IV          | 2.930                                           | 67.941                        | 112.091                                 | 81.112                                            | 72.709                                              | 1.683                                   | 39.732                                   | 8.509                              | 103.368                           |
| V           | 2.820                                           | 53.078                        | 39.105                                  | 27.134                                            | 69.109                                              | 1.198                                   | 36.006                                   | 8.105                              | 95.973                            |
| VI          | 2.480                                           | 55.726                        | 36.020                                  | 20.268                                            | 56.222                                              | 0.988                                   | 38.200                                   | 13.240                             | 133.264                           |
| VII         | 2.820                                           | 43.235                        | 70.416                                  | 44.974                                            | 62.327                                              | 1.099                                   | 31.109                                   | 8.302                              | 99.394                            |
| VIII        | 2.848                                           | 49.369                        | 105.649                                 | 57.472                                            | 54.932                                              | 1.150                                   | 29.738                                   | 5.884                              | 116.435                           |
| Probability | 0.011                                           | 0.000                         | 0.007                                   | 0.003                                             | 0.000                                               | 0.000                                   | 0.000                                    | 0.135                              | 0.004                             |

Table 5. Cluster means for the characters at 3 year age

high mean seed yield than ARV-035 in both the years, ARV-020 was identified as the best genotype based on consistent high per se performance and ARV-023 had highest seed yield at 4 year age and at par to ARV-020 at 3 year age. Thus ARV-036 X ARV-020 and ARV-036 X ARV-023 cross combinations would be the best to obtain superior plants in  $F_1$ . The  $F_1$  will be segregating generation because parents are

| Cluster     | Plant<br>height                                 | Stem<br>girth                 | No. of<br>primary<br>branches/<br>plant | No. of<br>fruiting<br>branches,<br>plant          | No. of<br>flushes/<br>/ fruiting<br>branch          | No. of<br>fruits/<br>fruiting<br>branch | Petiole<br>length                 | Area of<br>full<br>matured<br>leaf | Diameter of<br>fruiting<br>branch |
|-------------|-------------------------------------------------|-------------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|
| I           | 1.750                                           | 27.78                         | 2.950                                   | 8.450                                             | 1.095                                               | 2.963                                   | 8.264                             | 101.400                            | 1.544                             |
| II          | 1.996                                           | 29.62                         | 3.600                                   | 17.800                                            | 1.307                                               | 4.333                                   | 11.435                            | 128.267                            | 1.541                             |
| III         | 1.600                                           | 29.85                         | 3.600                                   | 13.400                                            | 1.040                                               | 3.300                                   | 10.378                            | 133.290                            | 1.402                             |
| IV          | 1.800                                           | 27.84                         | 3.600                                   | 9.367                                             | 1.153                                               | 3.083                                   | 12.126                            | 133.798                            | 1.541                             |
| V           | 1.706                                           | 29.09                         | 3.388                                   | 10.088                                            | 1.135                                               | 3.242                                   | 10.682                            | 131.005                            | 1.512                             |
| VI          | 2.057                                           | 32.28                         | 3.782                                   | 15.236                                            | 1.253                                               | 3.891                                   | 11.749                            | 136.963                            | 1.497                             |
| VII         | 2.327                                           | 33.01                         | 3.460                                   | 15.640                                            | 1.276                                               | 4.252                                   | 12.358                            | 130.136                            | 1.494                             |
| VIII        | 2.578                                           | 34.79                         | 3.560                                   | 15.520                                            | 1.184                                               | 4.336                                   | 12.890                            | 120.656                            | 1.434                             |
| Probability | 0.010                                           | 0.026                         | 0.487                                   | 0.038                                             | 0.027                                               | 0.020                                   | 0.027                             | 0.000                              | 0.628                             |
| Cluster     | No. of<br>primary<br>branches/<br>inflorescence | No<br>secc<br>brar<br>inflore | o. of<br>ondary<br>nches/<br>escence s  | No. of<br>male<br>flowers/<br>secondary<br>branch | No. of<br>female<br>flowers/<br>secondary<br>branch | No. of<br>flowers/<br>inflorescene      | Ratio<br>male<br>ce fema<br>flowe | of Frui<br>to diame<br>le<br>ers   | t Weight<br>ter per fruit         |
|             | 2.000                                           | 5.                            | 780                                     | 24.410                                            | 1.260                                               | 12.330                                  | 19.43                             | 37 1.97                            | 0 1.864                           |
| II          | 2.000                                           | 7.                            | 617                                     | 28.380                                            | 1.567                                               | 17.330                                  | 18.22                             | 25 2.06                            | 7 2.273                           |
| III         | 2.040                                           | 7.                            | 350                                     | 28.750                                            | 1.520                                               | 10.700                                  | 18.92                             | 22 2.05                            | 2 2.344                           |
| IV          | 2.020                                           | 7.                            | 574                                     | 20.581                                            | 1.449                                               | 11.161                                  | 14.6                              | 51 2.08                            | 8 2.603                           |
| V           | 2.017                                           | 7.                            | 559                                     | 23.184                                            | 1.341                                               | 10.251                                  | 17.6 <sup>-</sup>                 | 19 2.01                            | 3 2.199                           |
| VI          | 2.004                                           | 7.                            | 581                                     | 24.110                                            | 1.579                                               | 12.000                                  | 15.77                             | 70 1.98                            | 9 2.183                           |
| VII         | 2.000                                           | 7.                            | 511                                     | 21.353                                            | 1.532                                               | 12.171                                  | 14.24                             | 41 2.00                            | 8 2.405                           |
| VIII        | 2.120                                           | 7.                            | 976                                     | 20.750                                            | 1.000                                               | 8.848                                   | 20.7                              | 50 2.04                            | 4 2.417                           |
| Probability | 0.182                                           | 0.                            | 000                                     | 0.022                                             | 0.001                                               | 0.000                                   | 0.00                              | 3 0.05                             | 9 0.000                           |
| Cluster     | Seeds/<br>fruit                                 | 100<br>seed<br>weight         | Fruit yield<br>per plant                | Seed<br>yield/<br>plant                           | Seed<br>content                                     | Kernel :<br>shell<br>ratio              | Oil<br>content                    | Acid<br>value                      | lodine<br>value                   |
| I           | 2.770                                           | 43.286                        | 104.396                                 | 69.889                                            | 67.980                                              | 1.205                                   | 31.792                            | 8.429                              | 100.499                           |
| II          | 2.920                                           | 58.785                        | 167.344                                 | 113.443                                           | 68.138                                              | 1.375                                   | 32.220                            | 10.081                             | 118.191                           |
| III         | 2.880                                           | 62.552                        | 142.046                                 | 98.882                                            | 69.568                                              | 1.252                                   | 32.572                            | 26.098                             | 101.338                           |
| IV          | 2.820                                           | 67.524                        | 107.448                                 | 68.034                                            | 63.384                                              | 1.366                                   | 32.738                            | 7.342                              | 103.655                           |
| V           | 2.855                                           | 55.853                        | 94.342                                  | 63.286                                            | 66.807                                              | 1.297                                   | 32.065                            | 6.255                              | 111.658                           |
| VI          | 2.793                                           | 50.059                        | 126.161                                 | 72.405                                            | 57.459                                              | 1.069                                   | 31.363                            | 5.772                              | 112.821                           |
| VII         | 2.908                                           | 61.998                        | 150.837                                 | 109.535                                           | 72.788                                              | 1.553                                   | 39.795                            | 6.098                              | 107.746                           |
| VIII        | 2.920                                           | 67.985                        | 235.848                                 | 170.469                                           | 72.523                                              | 1.618                                   | 36.735                            | 9.882                              | 104.257                           |
| Probability | 0.179                                           | 0.000                         | 0.004                                   | 0.000                                             | 0.000                                               | 0.000                                   | 0.000                             | 0.000                              | 0.439                             |

Table 6. Cluster means for the characters at 4 year age

heterozygous, so clones may be developed from superior plants and tested at different locations.

In conclusion, for development of high oil content

clone genotypes ARV-079 and ARV-049 could be used as parents and can be crossed with ARV-036 or ARV-035 (having high inter cluster distance and good seed yield) and with ARV-020 or ARV-023 (having high *per*  se performance for seed yield and for most of the positively correlated characters with seed yield). High seed yield and oil yield is expected from the above hybrids. If not in hybrid, individual plant may be tested for these characters and desired one may be multiplied through vegetative propagation to obtain the superior clones for high seed yield and oil content.

#### References

- Prasad J. 2004. Technical bulletin on cultivation of bio-energy plant Jatropha. Nrendra Dev Univ. of Agri. and Technology, Kumargang, Faizabad (U.P.), India. pp. 1-4.
- Carvalhoa C. R., Clarindoa W. R., Pracaa M. M., Araújoa F. S. and Carelsb C. N. 2008. Genome size, base composition and karyotype of *Jatropha curcas* L., an important biofuel plant. Plant Sci., 6: 613-617.
- Owusu Danquah, Akromah E., Quashie-Sam R., Oduru S. J., Falk W., Thevathasan D. and Gordon A. M. 2012. The genetic diversity of *Jatropha curcas* in Ghana as revealed by random amplified polymorphic DNA (RAPD) primers. Agroforest Syst., 86: 443-450.
- Ward J. H. 1963. Hierarchical grouping to optimize an objective function. J. Ame. Statis. Asso., 58: 236-244.
- Kaushik N., Kumar K., Kumar S., Kaushik N. and Roy S. 2007. Genetic variability and divergence studies in seed traits and oil content of Jatropha (*Jatropha curcas* L.) accessions. Biomass & Bioenergy, 31: 497-502.
- 6. Rao G. R., Korwar G. R., Shanker A. K. and Ramakrishna Y. S. 2008. Genetic associations,

variability and diversity in seed characters, growth, reproductive phenology and yield in *Jatropha curcas* (L.) accessions. Trees: Struc. and Function, **22**: 697-709.

- Das S., Mohapatra A. K., Patnaik R. K., Swain D. and Gantayat B. P. 2008. Clustering of *Jatropha curcas* provenances. Agric. Sci. Digest, 28.
- Sunil N., Sivaraj N., Anitha K., Abraham B., Kumar V., Sudhir E., Vanaja M. and Varaprasad K. S. 2009. Analysis of diversity and distribution of *Jatropha curcas* L. germplasm using geographic information system (DIVA-GIS). Genetic Reso. and Crop Evolution, 56: 115-119.
- Ikbal, Boora K. S. and Dhillon R. S. 2010. Evaluation of genetic diversity in *Jatropha curcas* L. using RAPD markers. Indian J. Biotech., 9: 50-57.
- Shabanimofrad M., Yusop M. R., Saad M. S., Wahab P. E. M., Biabanikhanehkahdani A. and Latif M. A. 2011. Diversity of physic nut (*Jatropha curcas*) in Malaysia: application of DIVA-geographic information system and cluster analysis. Aust. J. Crop Sci., 5: 361-368.
- Ovando-Medina I., Sanchez-Gutierrez A., Adriano-Anaya L., Espinosa-Garcia F., Nunez-Farfan J. and Salvador-Figueroa M. 2011. Genetic diversity in *Jatropha curcas* populations in the state of Chiapas, Mexico. Diversity, 3: 641-659.
- Reddy V. R. G., Singh B. N. and Rai B. 1987. Analysis of genetic divergence in spreading varieties of groundnut. Crop Imp., 14: 149-152.
- Reddy K. P. H. and Reddy K. R. 1993. Genetic divergence in groundnut. Ann. of Agri. Res., 14: 9-14.