Stability analysis of groundnut (Arachis hypogaea L.) genotypes using AMMI and GGE biplot models and ideal genotype selection indicator
Main Article Content
Abstract
A study on stability analysis was carried out on groundnut (Arachis hypogaea L.) genotypes grown at multilocation over two crop
seasons. Based on additive main effects and multiplicative interaction (AMMI) analysis, the first two IPCAs explained 91.93% of the GEI
variation (74.84 and 17.09% for IPCA1 and IPCA2, respectively). Based on AMMI 2, the best genotype for environments RA1 and RA2 was 201. The genotypes, ICG192 and ICG130 were found suitable for environments TA1 and TA2, respectively. ICG178 was better adapted to environment MA2, whereas ICG140 and the control NC2 were the best genotypes for environment RA2. In the GGE biplot, PC1 and PC2 explained 81.22 and 13.33% of the total GGE variance. Based on the ideal genotype selection index (IGSI), the genotypes, ICG115, ICG201, and ICG178 were stable and can be used in the breeding programs to develop new varieties.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Annicchiarico P. 1997. Joint regression vs. AMMI analysis of genotype‐environment interactions for cereals in Italy. Euphytica, 94: 53‐62. https://doi.org/10.1023/A:1002954824178
Cubukcu P., Kocaturk M., Ilker E., Kadiroglu A., Vurarak Y., Sahin Y., Karakus M., Yildirim U.A., Goksoy A.T. and Sincik M. 2021. Stability analysis of some soybean genotypes using parametric and non-parametric methods in multi-environments. Turk. J. Field Crops, 26: 262-271. https://doi.org/10.17557/tjfc.1033363
Delacy I.H., Basford K.E., Cooper M., Bull J.K. and Mclaren C.G. 1996. Analysis of multi-environment trail an historical perspective. In: Plant adaptation and crop improvement (Cooper M, Hammer GL, eds). CAB International: Wallingford, UK. pp.39-124.
Eberhart S.A. and Russell W.A. 1966. Stability parameters for comparing varieties. Crop Sci., 6: 36-40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x
FAOSTAT. 2022. Food and Agriculture Organization of the United Nations Statistics.
Farshadfar E. 2008. Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pak. J. Biol. Sci., 11: 1791-1796. https://doi.org/10.3923/pjbs.2008.1791.1796.
Finlay K.W. and Wilkinson G.N. 1963. The analysis of adaptation in a plant breeding program. Aust. J. Agric. Res., 14: 742-754. http://dx.doi.org/10.1071/AR9630742
Francis T.R. and Kannenberg L.W. 1978. Yield stability studies in short-season maize (I). A descriptive method for genotypes. Can. J. Plant Sci., 58: 1029-1034. https://doi.org/10.4141/cjps78-157
Gauch H.G. and Zobel R.W. 1988. Predictive and postdictive success of statistical analysis of yield trials. Theor. Appl. Genet., 76: 1-10. https://doi.org/10.1007/BF00288824
GenStat. 2009. GenStat for Windows (12th Edition) Introduction. VSN International, Hemel Hempstead.
Goksoy A.T., Sincik M., Erdogmus M., Ergin M., Aytac S., Gumuscu G., Gunduz O., Keles R., Bayram G. and Senyigits E. 2019. The parametric and non-parametric stability analysis for interpreting genotype by environment interaction of some soybean genotypes. Turk. J. Field Crops, 24: 28-38. https://doi.org/10.17557/tjfc.562637
Gower J.C. 1967. Multivariate analysis and multivariate geometry. Statistician, 17: 13-28. https://doi.org/10.2307/2987199
Hwang C.L. and Yoon K. 1981. Multiple Attributes Decision Making Methods and Applications. Springer. Berlin Heidelberg.
Kaya Y. and Ozer E. 2014. Parametric stability analyses of multi-environment yield trials in triticale (xTriticosecale Wittmack). Genetika, 46: 705-718. https://doi.org/10.2298/GENSR1403705K
Kaya Y. and Sahin M. 2015. Non-parametric stability analyses of dough properties in wheat. Food Sci. Technol., 35: 509-515. http://dx.doi.org/10.1590/1678-457X.6642
Lin C.S. and Binns M.R. 1988a. A method of analyzing cultivar × location × year experiments: A new stability parameter. Theor. Appl. Genet., 76: 425- 430. https://doi.org/10.1007/bf00265344
Lin C.S. and Binns M.R. 1988b. A superiority measure of cultivar performance for cultivar×location data. Can. J. Plant Sci., 68: 193-198. https://doi.org/10.4141/cjps88-018
Lin C.S., Binns M.R. and Lefkovitch L.P. 1986. Stability analysis: Where do we stand? Crop Sci., 26: 894-900. https://doi.org/10.2135/cropsci1986.0011183X002600050012x
Minde A.S., Kamble M.S. and Pawar R.M. 2017. Stability analysis for pod yield and its component traits in groundnut (Arachis hypogaea L.). Asian J. Bio. Sci., 12 : 15-20. https://doi.org/10.15740/HAS/AJBS/12.1/15-20.
MINITAB Inc .2010. Ver. 16. Minitab, Inc., State College, PA.
Mungomery V.E., Shorter R. and Byth D.E. 1974. Genotype×environment nteractions and environment adaptation. I. Pattern analysis-application to soyabean population. Aust. J. Agric. Res., 25: 59-72. https://doi.org/10.1071/AR9740059
Olivoto T. and Lucio A.D. 2020. metan: an R package for multi-environment trial analysis. Methods Ecol. Evol., 11: 783-789. https://doi.org/10.1111/2041-210X.13384
Pinthus M.J. 1973. Estimate of genotypic value: A proposed method. Euphytica, 22: 121-123. https://doi.org/10.1007/BF00021563
Pliasted R.L. 1960. A shorter method of evaluating the ability of selection to yield consistently over seasons. Am. Potato J., 37: 166-172. https://doi.org/10.1007/BF02855271
Plaisted R.L. and Peterson L.C. 1959. A technique for evaluating the ability of selection to yield consistently in different locations or seasons. Am. Potato J., 36: 381-385. https://doi.org/10.1007/BF02852735
Pourdad S.S. 2011. Repeatability and relationships among parametric and non-parametric yield stability measures in safflower (Carthamus tinctorius L.) genotypes. Crop Breed. J., 1: 109-118. doi: 10.22092/cbj.2011.100360
Purchase J.L. 1997. Parametric analysis to describe G×E interaction and yield stability in winter wheat. PhD. thesis, Dep. of Agronomy, Faculty of Agriculture, Univ. of the Orange Free State, Bloemfontein, South Africa.
Raju B.M.K. 2002. A study on AMMI model and its biplots. J. Ind. Soc. Agric. Statistics, 55: 297‐322.
Roemer T. 1917. Sinde die ertragsreichen sorten ertragssicherer? Mitt. DLG., 32: 87-89.
Sahin E., Zeinalzadeh Tabrizi H. and Tosun M. 2012. Genotype×environment interaction and stability analysis of orchardgrass (Dactylis glomerata L.) ecotypes for seed yield in Erzurum, Turkey. Indian J. Adv. Chem. Sci., 4: 45-50.
SAS Institute. 2004. SAS/STAT user’s guide. v. 9.1. SAS Inst., Cary, NC.
Shojaei S.H., Mostafavi K., Omrani A., Omrani S., Nasir Mousavi S.M., Illes A., Bojtor C. and Nagy J. 2021. Yield stability analysis of maize (Zea mays L.) hybrids using parametric and AMMI methods. Scientifica. 2021, Article ID 5576691. https://doi.org/10.1155/2021/5576691
Shukla G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29: 237-245. https://doi.org/10.1038/hdy.1972.87
Singh M.S., Vivekananda Y., Shyamananda K.C., Singh R.S. and Sharma R. 2019. Selection of stable groundnut genotypes (Arachis hypogaea) for Manipur valley condition. Int. J. Curr. Microbiol. Appl. Sci., 8: 1382-1391. https://doi.org/10.20546/ijcmas.2019.808.161
Sneller C.H., Kilgore-Norquest L. and Dombek D. 1997. Repeatability of yield stability statistics in soybean. Crop Sci., 37: 383-390. https://doi.org/10.2135/cropsci1997.0011183X003700020013x
Tadege M.B., Utta H.Z. and Aga A.A. 2014. Association of statistical methods used to explore genotype×environment interaction (GEI) and cultivar stability. Afr. J. Agric. Res., 9: 2231-2237. https://doi.org/10.5897/AJAR2013.8366
Temesgen T., Keneni G., Sefera T. and Jarso M. 2015. Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. Crop J., 3: 258-268. https://doi.org/10.1016/j.cj.2015.03.004
Venkateswarlu O., Santhosh Kumar Naik B., Naik K. and Rajesh A.P. 2021. Stability analysis for seed yield and its component characters in groundnut (Arachis hypogaea L.). J. Pharm. Innov., 10: 2864-2866.
Wardofa G.A. and Ararsa A.D. 2020. Evaluation of grain yield stability analysis in bread wheat (Triticum aestivum L.) genotypes using parametric methods. Am. J. Life Sci., 8: 189-195. doi: 10.11648/j.ajls.20200806.12
Wricke G. 1962. Uber eine methode zur erfassung der geologischen sterubretic in feld versuchen, Pflanzuecht 47: 92-96.
Yan W. and Kang M.S. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press, Boca Raton, FL. 213 pp
Yan W., Hunt L.A., Sheng Q. and Szlavnics Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci., 40: 597-605. https://doi.org/10.2135/cropsci2000.403597x
Zali H., Farshadfar E., Sabaghpour S.H. and Karimizadeh R. 2012. Evaluation of genotype×environment interaction in chickpea using measures of stability from AMMI model. Ann. Biol. Res., 3: 3126-3136.
Zali H, Sofalian O, Hasanloo T, Asgharii A and Hoseini SM (2015) Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biol. Forum–An International Journal, 7: 703-711.
Zhang Z., Lu C. and Xiang Z.H. 1998. Stability analysis for varieties by AMMI model. Acta Agron. Sin., 24: 304‐309. https://zwxb.chinacrops.org/EN/Y1998/V24/I03/304
Zobel R.W., Wright M.J. and Gauch H.G. 1988. Statistical analysis of a yield trial. Agronomy J., 80(3): 388-393. https://doi.org/10.2134/agronj1988.00021962008000030002x