Allelic variants of EFL3 and their association with early flowering traits in chickpea (Cicer arietinum L.)
Main Article Content
Abstract
Allele mining of the ELF3 gene, associated with flowering time in chickpeas, was conducted using whole genome resequencing data from 254 chickpea genotypes within the chickpea reference set, utilizing the GATK tool. A total of 671 genetic variants were identified within the ELF3 genic region, encompassing not only its genic region but also its 1 kb promoter region and intergenic regions. Among these, biallelic SNPs were predominant (641), followed by multi-allelic InDels (19), multi-allelic SNPs (9) and least of biallelic Indels (2). Out of these 641 biallelic SNPs, 44 SNPs were located across 4 exons of ELF3 gene [exon 2 (16), exon 5 (10), exon1 (9) and exon 4 (9)] while exon 3 displayed no genetic variants. Remarkably, the distinctive 11 bp deletion within the first exon of ICC96029’s Elf3 was not detected in this analysis. Instead, a missense mutation within ELF3 was identified within the studied chickpea reference set. Utilizing a candidate gene-based association mapping approach, 20 variants (comprising 18 biallelic SNPs and 2 InDels) were employed based on their presence in at least 95% of genotypes. Employing a general linear model (GLM) approach with three years of phenotypic data, a total of 4 significant marker-trait associations (MTAs) were identified. Specifically, the variants SNP_021164.1_36025048 (G/A) and SNP_021164.1_36021869 (A/C) exhibited associations with the FLD/s trait. Additionally, the SNP locus SNP_021164.1_36011429 (C/T), located within exon 5 of ELF3a, and SNP_021164.1_36013862 (C/A) located within intron 2, displayed associations with the pod_D/S trait. These allelic variants, particularly the missense mutation, carry significant importance due to their potential impact on the interaction of ELF3 with interacting proteins that eventually lead to variations in flowering time within the chickpea population.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60.
Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012 Apr-Jun;6(2):80-92. PMID: 22728672.
Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, Shakir K, Thibault J, Chandran S, Whelan C, Lek M, Gabriel S, Daly MJ, Neale B, MacArthur DG, Banks E. (2017). Scaling accurate genetic variant discovery to tens of thousands of samples bioRxiv, 201178. DOI: 10.1101/201178.
“Picard Toolkit.” 2019. Broad Institute, GitHub Repository. https://broadinstitute.github.io/picard/; Broad Institute.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. Epub 2014 Apr 1. PMID: 24695404; PMCID: PMC4103590.
Chen X, Jiang L, Zheng J, Chen F, Wang T, Wang M, Tao Y, Wang H, Hong Z, Huang Y, Huang R. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice. J Exp Bot. 2019 Aug 7;70(15):3851-3866. doi: 10.1093/jxb/erz192.
Kwon CT, Yoo SC, Koo BH, Cho SH, Park JW, Zhang Z, Li J, Li Z, Paek NC. Natural variation in Early flowering1 contributes to early flowering in japonica rice under long days. Plant Cell Environ. 2014 Jan;37(1):101-12. doi: 10.1111/pce.12134.
Xue Q, Xiong H, Zhou C, Guo H, Zhao L, Xie Y, Gu J, Zhao S, Ding Y, Xu L, et al. Gene Mapping and Identification of a Missense Mutation in One Copy of VRN-A1 Affects Heading Date Variation in Wheat. International Journal of Molecular Sciences. 2023; 24(5):5008. https://doi.org/10.3390/ijms24055008.
Han J, Guo B, Guo Y, Zhang B, Wang X, Qiu LJ. Creation of Early Flowering Germplasm of Soybean by CRISPR/Cas9 Technology. Front Plant Sci. 2019 Nov 22;10:1446. doi: 10.3389/fpls.2019.01446.
Fornara, F., de Montaigu, A., and Coupland, G. (2010). SnapShot: control of flowering in Arabidopsis. Cell 141, 550–550.e2.
Tsubokura, Y., Watanabe, S., Xia, Z., Kanamori, H., Yamagata, H., Kaga, A., et al. (2013). Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann. Bot. 113, 429–441. doi: 10.1093/aob/mct269.
Xia, Z., Watanabe, S., Yamada, T., Tsubokura, Y., Nakashima, H., Zhai, H., et al. (2012). Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc. Natl. Acad. Sci. U.S.A. 109, E2155–E2164. doi: 10.1073/pnas.1117982109
Xie S, Luo H, Huang Y, Wang Y, Ru W, Shi Y, Huang W, Wang H, Dong Z, Jin W. A Missense Mutation in a Large Subunit of Ribonucleotide Reductase Confers Temperature-Gated Tassel Formation. Plant Physiol. 2020 Dec;184(4):1979-1997. doi: 10.1104/pp.20.00219.
Nefissi R, Natsui Y, Miyata K, Oda A, Hase Y, Nakagawa M, Ghorbel A, Mizoguchi T. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light. J Exp Bot. 2011 May;62(8):2731-44. doi: 10.1093/jxb/erq450.
Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung S, Halliday KJ, Amasino RM, Millar AJ. The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell. 2003 Nov;15(11):2719-29. doi: 10.1105/tpc.013730.
Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farre ́ , E.M., and Kay, S.A. (2011). The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398–402.
Hicks, K.A., Albertson, T.M., and Wagner, D.R. (2001). EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13, 1281–1292.
Kolmos, E., Herrero, E., Bujdoso, N., Millar, A.J., To ́ th, R., Gyula, P., Nagy, F., and Davis, S.J. (2011). A reduced-function allele reveals that EARLY FLOWERING3 repressive action on the circadian clock is modulated by phytochrome signals in Arabidopsis. Plant Cell 23, 3230–3246.
Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD. Candidate gene association mapping of Arabidopsis flowering time. Genetics. 2009 Sep;183(1):325-35. doi: 10.1534/genetics.109.105189.
Han, X., Xu, ZR., Zhou, L. et al. Identification of QTNs and their candidate genes for flowering time and plant height in soybean using multi-locus genome-wide association studies. Mol Breeding 41, 39 (2021). https://doi.org/10.1007/s11032-021-01230-3.
Cuervo-Alarcon, L., Arend, M., Müller, M. et al. A candidate gene association analysis identifies SNPs potentially involved in drought tolerance in European beech (Fagus sylvatica L.). Sci Rep 11, 2386 (2021). https://doi.org/10.1038/s41598-021-81594-w.
Bhusudsawang, G.; Rattanawong, R.; Phumichai, T.; Pootakham, W.; Tangphatsornruang, S.; Ukoskit, K. Identification of Candidate Gene-Based Markers for Girth Growth in Rubber Trees. Plants 2021, 10, 1440. https://doi.org/10.3390/plants10071440
Skøt L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID. Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics. 2007 Sep;177(1):535-47. doi: 10.1534/genetics.107.071522.
Bao, J. S., H. Corke and M. Sun, 2006. b Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theor. Appl. Genet. 113: 1171–1183.
Wilson, L. M., S. R. Whitt, A. M. Ibanez, T. R. Rocheford, M. M. Goodman et al., 2004. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16: 2719–2733.
Bullrich, L., Appendino, M., Tranquilli, G., Lewis, S., and Dubcovsky, J. (2002). Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor. Appl. Genet. 105, 585–593. doi: 10.1007/s00122-002-0982-5.
Jung, J.-H., Barbosa, A. D., Hutin, S., Kumita, J. R., Gao, M., Derwort, D., et al. (2020). A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585, 256–260. doi: 10.1038/s41586-020-2644-7
Strasser, B., Alvarez, M. J., Califano, A., and Cerdán, P. D. (2009). A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. Plant J. 58, 629–640. doi: 10.1111/j.1365-313x.2009.03811.x
Thines, B., and Harmon, F. G. (2010). Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc. Natl. Acad. Sci. U.S.A. 107, 3257–3262. doi: 10.1073/pnas.0911006107.
Yu, J.; Holland, J.B.; McMullen, M.D.; Buckler, E.S. Genetic design and statistical power of nested association mapping in maize.Genetics 2008, 178, 539–551.
Jordan, D.; Mace, E.; Cruickshank, A.; Hunt, C.; Henzell, R. Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci. 2011, 51, 1444–1457.
Maurer, A.; Draba, V.; Jiang, Y.; Schnaithmann, F.; Sharma, R.; Schumann, E.; Kilian, B.; Reif, J.C.; Pillen, K. Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics 2015, 16, 290.
Jamalabadi, J.G.; Saidi, A.; Karami, E.; Kharkesh, M.; Talebi, R. Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Biochem. Genet.
, 51, 387–397.
Weller, J.L.; Ortega, R. Genetic control of flowering time in legumes. Front. Plant Sci. 2015, 6, 207.
Kumar, J.; Abbo, S. Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv. Agron.
, 72, 107–138.
Gumberm, R.K.; Sarvjeet, S. Genetics of flowering time in chickpea: A preliminary report. Crop Improv. 1996, 23, 295–296.
Gaur, P.M.; Samineni, S.; Tripathi, S.; Varshney, R.K.; Gowda, C.L.L. Allelic relationships of flowering time genes in chickpea. Euphytica 2015, 203, 295–308.
Cobos, M.;Winter, P.; Kharrat, M.; Cubero, J.; Gil, J.; Millan, T.; Rubio, J. Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crop Res. 2009, 111, 130–136.
Cho, S.; Kumar, J.; Shultz, J.L.; Anupama, K.; Tefera, F.; Muehlbauer, F.J. Mapping genes for double podding and other morphological traits in chickpea. Euphytica 2002, 128, 285–292.
Mallikarjuna, B.P.; Samineni, S.; Thudi, M.; Sajja, S.B.; Khan, A.W.; Patil, A.; Viswanatha, K.P.; Varshney, R.V.; Gaur, P.M. Molecular mapping of flowering time major genes and QTLs in Chickpea (Cicer arietinum L.). Front. Plant Sci. 2017, 8, 1140.
Upadhyaya, H.D.; Bajaj, D.; Das, S.; Saxena, M.S.; Badoni, S.; Kumar, V.; Tripathi, S.; Gowda, C.L.L.; Sharma, S.; Tyagi, A.K.; et al. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Plant Mol. Biol. 2015, 89, 403–420.
Varshney, R.K.; Thudi, M.; Roorkiwal, M.; He, W.; Upadhyaya, H.D.; Yang, W.; Bajaj, P.; Cubry, P.; Rathore, A.; Jian, J.; et al. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 2019, 51, 857–864.
Das, S.; Upadhyaya, H.D.; Bajaj, D.; Kujur, A.; Badoni, S.; Kumar, V.; Tripathi, S.; Gowda, C.L.; Sharma, S.; Singh, S.; et al. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res. 2015, 22, 193–203.
Srivastava, R.; Upadhyaya, H.D.; Kumar, R.; Daware, A.; Basu, U.; Shimray, P.W.; Tripathi, S.; Bharadwaj, C.; Tyagi, A.K.; Parida, S.K. A multiple QTL-Seq strategy delineates potential genomic loci governing flowering time in chickpea. Front. Plant Sci. 2017, 8, 1105.
Kumar, J.; Abbo, S. Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv. Agron. 2001, 72, 107–138.
Ridge, S.; Deokar, A.; Lee, R.; Daba, K.; Macknight, R.C.;Weller, J.L.; Tarán, B. The chickpea Early Flowering 1 (Efl1) locus is an ortholog of Arabidopsis ELF3. Plant Physiol. 2017, 175, 802–815.
Anbessa, Y.; Warkentin, T.; Vandenberg, A.; Ball, R. Inheritance of time to flowering in chickpea in a shortseason temperate environment. J. Hered. 2003, 97, 55–61.
Tasma, I.M., Lorenzen, L.L., Green, D.E., and Shoemaker, R.C. 2001. Mapping genetic loci fo flowering time, maturity, and photoperiod insensitivity in soybean. Mol. Breed. 8: 25–35.
Jamalabadi, J.G., Saidi, A., Karami, E., Kharkesh, M., and Talebi, R. 2013. Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum L.). Biochem. Genet. 51: 387–397. doi:10.1007/ s10528-013-9571-3. PMID:23371372.
Karami, E., Talebi, R., Kharkesh, M., and Saidi, A. 2015. A linkage map of chickpea (Cicer arietinum L.) based on population from ILC 3279 × ILC 588 crosses: location of genes for time to flowering, seed size and plant height. Genetika, 47: 253–263.
Bonfil, D., Lichtenzveig, J., Shai, I., Lerner, A., Tam, S., and Abbo, S. 2006. Associations between earliness, ascochyta response, and grain yield in chickpea. Crop Pasture Sci. 57: 465–470.
Cho, S., Kumar, J., Shultz, J.L., Anupama, K., Tefera, F., and Muehlbauer, F.J. 2002. Mapping genes for double podding and other morphological traits in chickpea. Euphytica, 128: 285–292.
Cobos, M.J., Rubio, J., Strange, R., Moreno, M., Gil, J., and Millan, T. 2006. A new QTL for ascochyta blight resistance in an RIL population derived from an interspecific cross in chickpea.
Euphytica, 149: 105–111.
Lichtenzveig, J., Bonfil, D.J., Zhang, H., Shtienberg, D., and Abbo, S. 2006. Mapping quantitative trait loci in chickpea associated with time to flowering and resistance to didymella
rabiei the causal agent of ascochyta blight. Theor. Appl. Genet. 113: 1357–1369.
Anbessa, Y., Warkentin, T.D., Bueckert, R., and Vandenberg, A. 2007. Short internode, double podding and early flowering effects on maturity and other agronomic characters in chickpea.
Field Crops Res. 102: 43–50.
Kumar, J., and van Rheenen, H.A. 2000. A major gene for time of flowering in chickpea. J. Hered. 91: 67–68.
Or, E., Hovav, R., and Abbo, S. 1999. A major gene for flowering time in chickpea. Crop Sci. 39: 315–322.
Gaur, P.M., Samineni, S., Tripathi, S., Varshney, R.K., and Gowda, C.L. 2015. Allelic relationships of flowering time genes in chickpea. Euphytica, 203: 295–308.
Hegde VS (2010) Genetics of flowering time in chickpea in a semi-arid environment. Plant Breed 129: 683–687.
Kumar J, van Rheenen HA (2000) A major gene for time of flowering in chickpea. J Hered 91: 67–68.
Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72: 107–138.
Gaur PM, Samineni S, Tripathi S, Varshney RK, Gowda CLL (2015) Allelic relationships of flowering time genes in chickpea. Euphytica 203: 295–308.
Warkentin, T.D., Vandenberg, A., Banniza. S., Tar’an, B., Tullu, A., Lulsdorf, M., et al. 2003. Breeding chickpea for improved Ascochyta blight resistance and early maturity in western
Canada. In Proceedings of International Chickpea Conference, Indira Gandhi Agricultural University, India, 20–22 January 2003, Raipur, India. pp. 1–4.
Kumar, J., and Abbo, S. 2001. Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv. Agron. 72: 107–138. doi:10.1016/S0065-2113(01)
-3.
Gaur PML, Krishnamurthy L, Kashiwagi J (2008b) Improving drought-avoidance root traits in chickpea (Cicer arietinum L.), Current status of research at ICRISAT. Plant Prod Sci 11:3–11
Gumber RK, Sarvjeet S (1996) Genetics of flowering time in chickpea: a preliminary report. Crop Improvement 23: 295–296.
Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30: 1081–1087
Young, V.R.; Pellett, P.L. Plant proteins in relation to human protein and amino acid nutrition. Am. J. Clin. Nutr. 1994, 59, 1203S–1212S.
Woolf, P.J.; Fu, L.L.; Basu, A. vProtein: Identifying optimal amino acid complements from plant-based foods. PLoS ONE 2011, 6, e18836.
Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72: 107–138
Gaur PM, Samineni S, Tripathi S, Varshney RK, Gowda CLL (2015) Allelic relationships of flowering time genes in chickpea. Euphytica 203: 295–308.
FAOSTAT (2014) http://faostat.fao.org/faostat