Unraveling the inheritance of powdery mildew disease resistance in blackgram [Vigna mungo L. Hepper]
Main Article Content
Abstract
The present investigation was carried out to unravel the inheritance of powdery mildew disease (PMD) resistance using two F1 (LGB 752 × DBGV 5 and VBN 6 × LBG 17) and their corresponding F2 segregating populations. Results showed that both the F1 showed resistance and their F2 populations segregated in to 9:3:3:1 ratio, and goodness of fit showed highly significant indicating PMD resistance is controlled by two major dominant genes, which are bi-allelic, non-epistatic, and di-genic in nature
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ahn, C. S., Han, J. A., Lee, H. S., Lee, S., & Pai, H. S. (2011). The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. The Plant Cell, 23(1), 185-209.
Andersen, E. J., Shaw, S. R., & Nepal, M. P. (2015, April). Genome-wide identification of disease resistance genes in Aegilops tauschii Coss.(Poaceae). In 100th Annual Meeting of the South-Dakota-Academy-of-Science, Oacoma, SD (pp. 281-295).
Appels, R., Eversole, K., Stein, N., Feuillet, C., Keller, B., ... & Singh, N. K. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361(6403), eaar7191.
Arcade, A., Labourdette, A., Falque, M., Mangin, B., Chardon, F., Charcosset, A., & Joets, J. (2004). BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics, 20(14), 2324-2326.
Asad, M. A., Bai, B., Lan, C. X., Yan, J., Xia, X. C., Zhang, Y., & He, Z. H. (2012). Molecular mapping of quantitative trait loci for adult-plant resistance to powdery mildew in Italian wheat cultivar Libellula. Crop and Pasture Science, 63(6), 539-546.
Balakireva, A. V., Deviatkin, A. A., Zgoda, V. G., Kartashov, M. I., Zhemchuzhina, N. S., Dzhavakhiya, V. G., ... & Zamyatnin Jr, A. A. (2018). Proteomics analysis reveals that caspase-like and metacaspase-like activities are dispensable for activation of proteases involved in early response to biotic stress in Triticum aestivum L. International Journal of Molecular Sciences, 19(12), 3991.
Ballesteros, I., Domínguez, T., Sauer, M., Paredes, P., Duprat, A., Rojo, E., ... & Sánchez‐Serrano, J. J. (2013). Specialized functions of the PP 2A subfamily II catalytic subunits PP 2A‐C3 and PP 2A‐C4 in the distribution of auxin fluxes and
development in A rabidopsis. The Plant Journal, 73(5), 862-872.
Bennett, F. G. (1984). Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant pathology, 33(3), 279-300.
Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Plant bioinformatics: Methods and protocols, 115-140.
Börner, A., Schumann, E., Fürste, A., Cöster, H., Leithold, B., Röder, M., & Weber, W. (2002). Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 105, 921-936.
Bougot, Y., Lemoine, J., Pavoine, M. T., Guyomar'Ch, H., Gautier, V., Muranty, H., & Barloy, D. (2006). A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breeding, 125(6), 550-556.
Buckler IV, E. S., & Thornsberry, J. M. (2002). Plant molecular diversity and applications to genomics. Current opinion in plant biology, 5(2), 107-111.
Chen, Y., Hunger, R. M., Carver, B. F., Zhang, H., & Yan, L. (2009). Genetic characterization of powdery mildew resistance in US hard winter wheat. Molecular breeding, 24, 141-152.
Chen, L. H., Tsai, H. C., Yu, P. L., & Chung, K. R. (2017). A major facilitator superfamily transporter-mediated resistance to oxidative stress and fungicides requires Yap1, Skn7, and MAP kinases in the citrus fungal pathogen Alternaria alternata. PLoS One, 12(1), e0169103.
Cowger, C., Mehra, L., Arellano, C., Meyers, E., & Murphy, J. P. (2018). Virulence differences in Blumeria graminis f. sp. tritici from the central and eastern United States. Phytopathology, 108(3), 402-411.
Cubero, B., Nakagawa, Y., Jiang, X. Y., Miura, K. J., Li, F., Raghothama, K. G., ... & Pardo, J. M. (2009). The phosphate transporter PHT4; 6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis. Molecular Plant, 2(3), 535-552.
Danan, S., Veyrieras, J. B., & Lefebvre, V. (2011). Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biology, 11(1), 1-17.
Darvasi, A., & Soller, M. (1997). A simple method to calculate resolving power and confidence interval of QTL map location. Behavior genetics, 27, 125-132.
DeWan, A. T., Parrado, A. R., Matise, T. C., & Leal, S. M. (2002). The map problem: a comparison of genetic and sequence-based physical maps. The American Journal of Human Genetics, 70(1), 101-107.
Durian, G., Rahikainen, M., Alegre, S., Brosché, M., & Kangasjärvi, S. (2016). Protein phosphatase 2A in the regulatory network underlying biotic stress resistance in plants. Frontiers in plant science, 7, 812.
Farkas, I., Dombradi, V., Miskei, M., Szabados, L., & Koncz, C. (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends in plant science, 12(4), 169-176.
Flor, H. H. (1971). Current status of the gene-for-gene concept. Annual review of phytopathology, 9(1), 275-296.
Frenkel, O., Cadle-Davidson, L., Wilcox, W. F., & Milgroom, M. G.
(2015). Mechanisms of resistance to an azole fungicide in the grapevine powdery mildew fungus, Erysiphe necator. Phytopathology, 105(3), 370-377.
Goffinet, B., & Gerber, S. (2000). Quantitative trait loci: a meta-analysis. Genetics, 155(1), 463-473.
Hao, Y., Parks, R., Cowger, C., Chen, Z., Wang, Y., Bland, D., ... & Johnson, J. (2015). Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theoretical and applied genetics, 128, 465-476.
Haydon, M. J., & Cobbett, C. S. (2007). A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant physiology, 143(4), 1705-1719.
He, R., Chang, Z., Yang, Z., Yuan, Z., Zhan, H., Zhang, X., & Liu, J. (2009). Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theoretical and Applied Genetics, 118, 1173-1180.
Huang BE, George AW, Forrest KL, et al. (2012a). A multiparent advanced generation inter‐cross population for genetic analysis in wheat. Plant Biotechnology Journal 10, 826-39.
Huang BE, Verbyla KL, Verbyla AP, et al. (2015). MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics 128, 999-1017.
Huang J, Zhao ZH, Song FJ, et al. (2012b). Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66. Molecular Breeding 30, 1737-45.
Huang XH, Han B. (2014). Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, Vol 65 65, 531-51.
Hsam SLK, Lapochkina IF, Zeller FJ.(2003). Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133, 367-70.
Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical Journal, 353(3), 417-439.
Jia, A., Ren, Y., Gao, F., Yin, G., Liu, J., Guo, L., ... & Xia, X. (2018). Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B. Theoretical and Applied Genetics, 131, 1063-1071.
Juliana, P., Singh, R. P., Singh, P. K., Poland, J. A., Bergstrom, G. C., Huerta-Espino, J., ... & Sorrells, M. E. (2018). Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theoretical and applied genetics, 131, 1405-1422.
Keller, M., Keller, B., Schachermayr, G., Winzeler, M., Schmid, J. E., Stamp, P., & Messmer, M. M. (1999). Quantitative trait loci for resistance against powdery mildew in a segregating wheat× spelt population. Theoretical and Applied Genetics, 98, 903-912.
Kou, Y., & Wang, S. (2010). Broad-spectrum and durability: understanding of quantitative disease resistance. Current opinion in plant biology, 13(2), 181-185.
Kretschmer, M., Leroch, M., Mosbach, A., Walker, A. S., Fillinger, S., Mernke, D., ... & Hahn, M. (2009). Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathogens, 5(12), e1000696.
Lan, C., Liang, S., Wang, Z., Yan, J., Zhang, Y., Xia, X., & He, Z. (2009). Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology, 99(10), 1121-1126.
Lan, C., Ni, X., Yan, J., Zhang, Y., Xia, X., Chen, X., & He, Z. (2010). Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Molecular Breeding, 25, 615-622.
Lewien, M. J., Murray, T. D., Jernigan, K. L., Garland-Campbell, K. A., & Carter, A. H. (2018). Genome-wide association mapping for eyespot disease in US Pacific Northwest winter wheat. One, 13(4), e0194698.
Liang, S. S., Suenaga, K., He, Z. H., Wang, Z. L., Liu, H. Y., Wang, D. S., ... & Xia, X. C. (2006). Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology, 96(7), 784-789.
Lillemo, M., Asalf, B., Singh, R. P., Huerta-Espino, J., Chen, X. M., He, Z. H., & Bjørnstad, Å. (2008). The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics, 116, 1155-1166.
Lillemo, M., Bjørnstad, Å., & Skinnes, H. (2012). Molecular mapping of partial resistance to powdery mildew in winter wheat cultivar Folke. Euphytica, 185, 47-59.
Lin, H. C., Yu, P. L., Chen, L. H., Tsai, H. C., & Chung, K. R. (2018). A major facilitator superfamily transporter regulated by the stress-responsive transcription factor Yap1 is required for resistance to fungicides, xenobiotics, and oxidants and full virulence in Alternaria alternata. Frontiers in microbiology, 9, 2229.
Liu, W., Koo, D. H., Xia, Q., Li, C., Bai, F., Song, Y., ... & Gill, B. S. (2017). Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theoretical and applied genetics, 130, 841-848.
Li, G., Xu, X., Tan, C., Carver, B. F., Bai, G., Wang, X., ... & Cowger, C. (2019). Identification of powdery mildew resistance loci in wheat by integrating genome-wide association study (GWAS) and linkage mapping. The Crop Journal, 7(3), 294-306.
Maccaferri, M., Zhang, J., Bulli, P., Abate, Z., Chao, S., Cantu, D., ... & Dubcovsky, J. (2015). A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3: Genes, Genomes, Genetics, 5(3), 449-46Marone, D., Russo, M. A., Laidò, G., De Vita, P., Papa, R., Blanco, A., ... & Mastrangelo, A. M. (2013). Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC genomics, 14(1), 1-17.
McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morris, C., Appels, R., Xia, X. C., & AZUL, B. (2013). CATALOGUE OF GENE SYMBOLS FOR WHEAT: 2013-2014. In Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan.
McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morris, C., Appels, R., & Xia, X. C. (2016). Catalogue of gene symbols for wheat: 2015–2016 supplement. Komugi Wheat Genet. Resour. Database.
Mcintosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC, 2017. Catalogue of Gene Symbols for Wheat: 2017 (Supplement). https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf.
Mingeot, D., Chantret, N., Baret, P. V., Dekeyser, A., Boukhatem, N., Sourdille, P., ... & Jacquemin, J. M. (2002). Mapping QTL
involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breeding, 121(2), 133-140.
Mohler, V., & Stadlmeier, M. (2019). Dynamic QTL for adult plant resistance to powdery mildew in common wheat (Triticum aestivum L.). Journal of Applied Genetics, 60, 291-300.
Mohler, V., Bauer, C., Schweizer, G., Kempf, H., & Hartl, L. (2013). Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. Journal of applied genetics, 54, 259-263.
Muranty, H., Pavoine, M. T., Jaudeau, B., Radek, W., Doussinault, G., & Barloy, D. (2009). Two stable QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 are expressed at different times along the growing season. Molecular breeding, 23, 445-461.
Nelson, R., Wiesner-Hanks, T., Wisser, R., & Balint-Kurti, P. (2018). Navigating complexity to breed disease-resistant crops. Nature Reviews Genetics, 19(1), 21-33.
Niks, R. E., Qi, X., & Marcel, T. C. (2015). Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. Annual Review of Phytopathology, 53, 445-470.
Pilet-Nayel, M. L., Moury, B., Caffier, V., Montarry, J., Kerlan, M. C., Fournet, S., ... & Delourme, R. (2017). Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Frontiers in plant science, 8, 1838.
Qin, B., Cao, A., Wang, H., Chen, T., You, F. M., Liu, Y., ... & Wang,
X. E. (2011). Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theoretical and Applied Genetics, 123, 207-218.
Remy, E., Cabrito, T. R., Baster, P., Batista, R. A., Teixeira, M. C., Friml, J., ... & Duque, P. (2013). A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. The Plant Cell, 25(3), 901-926.
Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428.
Ren, T., Tang, Z., Fu, S., Yan, B., Tan, F., Ren, Z., & Li, Z. (2017). Molecular cytogenetic characterization of novel wheat-rye T1RS. 1BL translocation lines with high resistance to diseases and great agronomic traits. Frontiers in Plant Science, 8, 799.
Roohparvar, R., De Waard, M. A., Kema, G. H., & Zwiers, L. H. (2007). MgMfs1, a major facilitator superfamily transporter from the fungal wheat pathogen Mycosphaerella graminicola, is a strong protectant against natural toxic compounds and fungicides. Fungal Genetics and Biology, 44(5), 378-388.
Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike information criterion statistics. Dordrecht, The Netherlands: D. Reidel, 81(10.5555), 26853
Simmons, C. R., Fridlender, M., Navarro, P. A., & Yalpani, N. (2003). A maize defense-inducible gene is a major facilitator superfamily member related to bacterial multidrug resistance efflux antiporters. Plant molecular biology, 52, 433-446.
Singh, R. P., Hodson, D. P., Huerta-Espino, J., Jin, Y., Njau, P., Wanyera, R., ... & Ward, R. W. (2008). Will stem rust destroy the world's wheat crop?. Advances in agronomy, 98, 271-309.
Skinner, M. E., Uzilov, A. V., Stein, L. D., Mungall, C. J., & Holmes, I. H. (2009). JBrowse: a next-generation genome browser. Genome research, 19(9), 1630-1638.
Somers, D. J., Isaac, P., & Edwards, K. (2004). A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and applied genetics, 109, 1105-1114.
Tucker, D. M., Griffey, C. A., Liu, S. I. X. I. N., Brown-Guedira, G., Marshall, D. S., & Maroof, M. S. (2007). Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica, 155, 1-13.
Wang, S. X., Zhu, Y. L., Zhang, D. X., Shao, H., Liu, P., Hu, J. B., ... & Ma, C. X. (2017). Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PloS one, 12(11), e0188662.
Xu, X., Zhu, Z., Jia, A., Wang, F., Wang, J., Zhang, Y., ... & He, Z. (2020). Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 216, 1-12.
Xie WL, Ben-David R, Zeng B, et al. (2012a). Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Molecular Breeding 29, 399-412.
Xin M, Wang X, Peng H, et al. (2012). Transcriptome comparison of susceptible and resistant wheat in response to powdery mildew infection. Genomics, proteomics & bioinformatics 10, 94-106.
Xu CY, Jing RL, Mao XG, Jia XY, Chang XP. (2007). A wheat (Triticum aestivum) protein phosphatase 2A catalytic subunit gene provides enhanced drought tolerance in tobacco. Annals of Botany 99, 439-50
Zhang HT, Guan HY, Li JT, et al (2010). Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics 121, 1613-21.
Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and prospects of association mapping in plants. The plant genome, 1(1)