Identification of heterotic maize hybrids with post flowering stalk rot resistance utilizing tropical and temperate inbred lines

Main Article Content

Nagesh Bichewar Dattatray
B. V. Varaprasad
MV Nagesh Kumar
V. Ramya
N. Sunil
D. Bhadru
B. Mallaiah
A. Meena

Abstract

Maize (Zea mays L.) is a staple cereal crop contributing to global food security. The increasing demand for maize in food and feed
industries necessitates enhancing the yield by utilizing diverse inbred lines with multiple stress tolerance. Forty inbred lines, including 30
tropical and 10 temperate lines, were crossed with two diverse testers, CML 286 and CML 451, during kharif 2021 for heterotic grouping
of post-flowering stalk rot (PFSR) resistant lines with high yield potential. The heterotic group-specific and general combining ability
(HSGCA) method classified them into three groups viz., A of CML 286 with 19 lines, B of CML 451 with 13 lines and an undetermined
group with eight lines. Six lines of group A (five tropical lines PFSR 393, PFSR 204, GP 327, PFSR 145, GP 82 and one temperate line GP
329) and five lines of group B (three tropical lines GP 36, GP 69, GP 86 and two temperate lines GP 83, GP 107) with highly significant
HSGCA effects were crossed to produce 30 single cross hybrids during Rabi 2021-22. Screening of these 11 inbred lines from both
groups A & B identified two diverse inbred lines viz., tropical GP 36 and temperate GP 83 with PSFR resistance, which can be used as
potential donors. The general combining ability (GCA) effects identified three tropical inbred lines, PFSR 145, PSFR 393, GP 36 and one
temperate inbred GP 107 line, as good general combiners for early maturity and two temperate inbred lines, GP 329 and GP 107, as
best general combiners for grain yield with moderate PFSR resistance demonstrating the potential of temperate and tropical maize
lines for increased yield and PFSR resistance. The specific combining ability (SCA) effects identified five potential hybrids GP 329 × GP
83, GP 329 × GP 86, PFSR 393 × GP 107, GP 82 × GP 83 and PFSR 145 × GP 86 with high per se performance for grain yield for future use
in maize hybrid breeding programmes with PFSR resistance.

Article Details

How to Cite
Dattatray, N. B., Varaprasad, B. V., Kumar, M. N., Ramya, V., Sunil, N. ., Bhadru, D., Mallaiah, B., & Meena, A. (2024). Identification of heterotic maize hybrids with post flowering stalk rot resistance utilizing tropical and temperate inbred lines. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 84(04), 561–573. https://doi.org/10.31742/ISGPB.84.4.6
Section
Research Article

References

Abadassi J. and Herve Y. 2000. Introgression of temperate germplasm to improve an elite tropical maize population. Euphytica, 113:125–133. https://doi.org/10.1023/A:1003916928181

Afolabi C.G., Ojiambo P.S., Ekpo E.J.A., Menkir A. and Bandyopadhyay R. 2007. Evaluation of maize inbred lines for resistance to Fusarium ear rot and fumonisin accumulation in grain in tropical Africa. Plant Dis., 91(3): 279-286. https://doi.org/10.1094/PDIS-91-3-0279

Ajay S., Shahi J.P. and Langade D.M. 2013. Combining ability studies for yield and its related traits in inbred lines of maize (Zea mays L.). Mol. Plant Breed., 4:177–188. https://doi.org/10.5376/mpb.2013.04.0022

Akinwale R.O., Badu-Apraku B., Fakorede M.A.B. and Vroh-Bi I. 2014. Heterotic grouping of tropical early maturing maize inbred lines based on combining ability in Striga-infested and Striga-free environments and the use of SSR markers for genotyping. Field Crops Res., 156: 48-62. http://dx.doi.org/10.1016/j.fcr.2013.10.015

Amegbor I.K., Badu-Apraku B. and Annor B. 2017. Combining ability and heterotic patterns of extra-early maturing white maize inbreds with genes from Zea diploperennis under multiple environments. Euphytica, 213(1): 1-16. https://doi.org/10.1007/s10681-016-1823-y

Andorf C., Beavis W.D., Hufford M., Smith S., Suza W.P. and Wang K. 2019. Technological advances in maize breeding: past, present and future. Theor. Appl. Genet., 132: 817–84. https://doi.org/10.1007/s00122-019-03306-3

Annor B., Badu‐Apraku B., Nyadanu D., Akromah R. and Fakorede M.A. 2020. Identifying heterotic groups and testers for hybrid development in early maturing yellow maize (Zea mays) for sub‐Saharan Africa. Plant Breeding, 139(4): 708-716. https://doi.org/10.1111/pbr.12822

Arifin N.S., Nughara A.A., Waluyo B., Ardiarini N.R. and Azrai M. 2018. Grouping in heterotic pool of maize inbred lines based on numerical and graphical analysis of combining ability. SABRAO J. of Breed. Genet., 50: 475-493.

Badu-Apraku B., Fakorede M.A.B., Gedil M., Talabi A.O., Annor B., Oyekunle M., Akinwale R.O., Fasanmade T.Y., Akaogu I.C. and Aderounmu M. 2015a. Heterotic responses among crosses of IITA and CIMMYT early white maize inbred lines under multiple stress environments. Euphytica, 206(1): 245-262. https://doi.org/10.1007/s10681-015-1506-0

Badu-Apraku B., Annor B., Oyekunle M., Akinwale R.O., Fakorede M.A.B., Talabi A.O., Akaogu I.C., Melaku G. and Fasanmade Y. 2015b. Grouping of early maturing quality protein maize inbreds based on SNP markers and combining ability under multiple environments. Field Crops Res., 183: 169-183. https://doi.org/10.1016/j.fcr.2015.07.015

Badu‐Apraku B., Fakorede M.A.B., Talabi A.O., Oyekunle M., Akaogu I.C., Akinwale R.O., Annor B., Melaku G., Fasanmade Y. and Aderounmu M. 2016. Gene action and heterotic groups of early white quality protein maize inbreds under multiple stress environments. Crop Science, 56(1): 183-199. https://doi.org/10.2135/cropsci2015.05.0276

Badu-Apraku B., Oyekunle M., Akinwale R.O. and Aderounmu M. 2013. Combining ability and genetic diversity of extra-early white maize inbreds under stress and non-stress environments. Crop Science, 53(1): 9-26. https://doi.org/10.2135/cropsci2012.06.0381

Badu-Apraku B., Oyekunle M., Akinwale R.O. and Fontem Lum A. 2011. Combining ability and heterotic groups of early-maturing tropical white maize inbred lines under stress and nonstress environments. Agron J., 103: 544 -557. https://doi.org/10.2134/agronj2010.0345

Badu-Apraku B., Oyekunle M., Fakorede M.A.B., Vroh I., Akinwale R.O. and Aderounmu M. 2013b. Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica, 192(3): 413-433. https://doi.org/10.1007/s10681-013-0876-4

Basbag S., Ekinci R. and Gencer O. 2007. Combining ability and heterosis for earliness characters in line× tester population of Gossypium hirsutum L. Hereditas, 144: 185-90. https://onlinelibrary.wiley.com/doi/10.1111/j.2007.0018-0661.01998.x

Belay N. 2018. Genetic variability, heritability, correlation and path coefficient analysis for grain yield and yield component in maize (Zea mays L.) hybrids. Adv. Crop Sci. Tech., 6(5): 399-408. https://doi.org/10.4172/2329-8863.1000399

Derera J., Tongoona P., Vivek B.S. and Laing M.D. 2008. Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica, 162: 411-422. https://doi.org/10.1007/s10681-007-9582-4

Desai S. and Hegde R.K. 1991. A preliminary survey of incidence of stalk rot complex of maize in two districts of Karnataka. Indian Phytopathol., 43: 575–576. https://epubs.icar.org.in/index.php/IPPJ/article/view/22688

Duvick D.N. 2001. Biotechnology in the 1930s: the development of hybrid maize. Nat. Rev. Genet., 2(1): 69–74. https://doi.org/10.1038/35047587

Elmyhun M., Liyew C., Shita A. and Andualem M. 2020. Combining ability performance and heterotic grouping of maize (Zea mays) inbred lines in testcross formation in Western Amhara, North West Ethiopia. Cogent Food & Agriculture, 6(1): 1727625. https://doi.org/10.1080/23311932.2020.1727625

Fan X., Bi Y., Zhang Y., Jeffers D., Yin X. and Kang M. 2018. Improving breeding efficiency of a hybrid maize breeding program using a three heterotic‐group classification. Agronomy J., 110(4): 1209-1216. https://doi.org/10.2134/agronj2017.05.0290

Fan X.M., Zhang Y.M., Yao W.H., Chen H.M., Tan J., Xu C.X., Han X.L., Luo L.M. and Kang M.S. 2009. Classifying maize inbred lines into heterotic groups using a factorial mating design. Agronomy J., 101: 106-112. https://doi.org/10.2134/agronj2008.0217

Fan X.M., Yin X.F., Zhang Y.D., Bi Y.Q., Liu L., Chen H.M. and Kang M.S. 2016. Combining ability estimation for grain yield of maize exotic germplasm using testers from three heterotic groups. Crop Science, 56:2527–2535. https://doi.org/10.2135/cropsci2016.01.0032

FAOSTAT. 2023. Food outlook. Biannual reports on global food markets. 104. https://www.fao.org/3/cb4479en/cb4479en.pdf

Fasahat P., Rajabi A., Rad M.J., Derera J. 2016. Principles and utilization of combining ability in plant breeding. Biom. Biostat. Int. J., 4: 1–24. https://doi.org/10.15406/bbij.2016.04.00085.

Gaballah M.M., Attia K.A., Ghoneim A.M., Khan N., El-Ezz A.F., Yang B., Xia L., Ibrahim El. and Al-Doss A.A. 2022. Assessment of genetic parameters and gene action associated with heterosis for enhancing yield characters in novel hybrid rice parental lines. Plants, 11(3): 266. https://doi.org/10.3390/plants11030266

Gupta S.K., Nepolean T., Shaikh C.G., Rai K., Hash C.T., Das R.R. and Rathore A. 2018. Phenotypic and molecular diversity-based prediction of heterosis in pearl millet (Pennisetum glaucum L. (R.) Br.). Crop J., 6: 271–281. https://doi.org/10.1016/j.cj.2017.09.008

Hale A.L., Farnham M.W., Nzaramba M.N., Kimbeng C.A. 2007. Heterosis for horticultural traits in broccoli. Theor. Appl. Genet., 115: 351–360. https://doi.org/10.1007/s00122-007-0569-2

Hallauer A.R. and Miranda Filho J.B de. 1988. Quantitative genetics in maize breeding. Ames, Iowa State University Press. 468 pp..

Harleen K., Chander M. and Huaja M. 2016. Morphological and pathological characterization of Fusarium verticillioides from different maize growing areas of Punjab. Ind. Phytopath., 69(2): 190-194. https://epubs.icar.org.in/index.php/IPPJ/article/view/58380

Khokhar M., Sharma S. and Gupta R. 2014. Integrated management of post flowering stalk rot of maize caused by Fusarium verticillioides. Indian Phytopathol., 67: 228–233. https://epubs.icar.org.in/index.php/IPPJ/article/view/43112

Kulka V.P., Silva T.A.D., Contreras-Soto R.I., Maldonado C., Mora F. and Scapim V.A. 2018. Diallel analysis and genetic differentiation of tropical and temperate maize inbred lines. Crop Breed. Appl. Biotech., 18(1):31–38. https://doi.org/10.1590/1984-70332018v18n1a5

Kumar P., Longmei N., Jat B.S., Choudhary M., Yathish K.R., Bhushan B., Goyal M. and Rakshit S. 2022. Heterotic grouping of Indian baby corn lines based on combining ability. Indian J. Genet. Plant Breed., 82(2): 161-166. https://doi.org/10.31742/IJGPB.82.2.4

Lahane G.R., Patel J.M. and Chauhan R.M. 2015. Estimation of combining ability and heterosis for quantitative traits in maize (Zea mays L.) using diallel approach. Agricultural Science Digest – A Research J., 35(4): 269-274. http://10.0.73.117/asd.v35i4.6857

Lanes, E.C.M., Viana, J.M.S., Paes, G.P., Paula, M.F.B., Maia, C., Caixeta, E.T. and Miranda, G.V. 2014. Population structure and genetic diversity of maize inbreds derived from tropical hybrids. Genet Mol. Res., 13(3): 7365-7376. https://doi.org/10.4238/2014.September.12.2.

Lee E.A., Ash M.J. and Good B. 2007. Re‐examining the relationship between degree of relatedness, genetic effects and heterosis in maize. Crop Sci., 47(2): 629-635. https://doi.org/10.2135/cropsci2006.04.0275

Liu K, Goodman M., Muse S., Smith J.S., Buckler E. and Doebley J. 2003. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics, 165(4): 2117-2128. https://doi.org/10.1093/genetics/165.4.2117

Mahato A., Shahi J.P., Singh P.K., Kumar M. and Singamsetti A. 2021. Heterotic grouping of sweet corn (Zea mays var. sachharata) genotypes based on their combining ability and molecular diversity. Indian J. Genet. Plant Breed., 81: 410-421. https://doi.org/10.31742/IJGPB.81.3.8

Mir Z.R., Singh P.K., Zaidi P.H., Vinayan M.T., Sharma S.S., Krishna M.K., Krishna Vemula A.K., Rathore A. and Nair S.K. 2018. Genetic analysis of resistance to post flowering stalk rot in tropical germplasm of maize (Zea mays L.). Crop Protection, 106: 42-49. https://doi.org/10.1016/j.cropro.2017.12.004

Mukri G., Bhat J.S., Gadag R.N., Motagi B.N., Manjunatha B., Kumar R. and Pal D. 2021. Evaluation of inbred lines derived from commercial hybrids and their utilization in developing high yielding field corn (Zea mays L.) hybrids. Maydica, 65: 1–9.

Mukri G., Patil M.S., Motagi B.N., Bhat J.S., Singh C., Jeevan Kumar S.P., Gadag R.N., Gupta N.C. and Simal-Gandara J. 2022. Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.). Mol. Biol. Rep., 49(6): 4517-4524. https://doi.org/10.1007/s11033-022-07295-3

Murtadha M.A., Ariyo O.J. and Alghamdi S.S. 2018. Analysis of combining ability over environments in diallel crosses of maize (Zea mays). J. Saudi Society Agric. Sci., 17: 69–78. https://doi.org/10.1016/j.jssas.2016.01.004

Musundire L., Derera J., Dari S., Tongoona P. and Cairns J.E. 2019. Molecular characterisation of maize introgressed inbred lines bred in different environments. Euphytica, 215:1-14. https://doi.org/10.1007/s10681-019-2367-8

Oyekunle M., Haruna A., Badu‐Apraku B., Usman I.S., Mani H., Ado S.G., Olaoye G., Obeng‐Antwi K., Abdulmalik R.O. and Ahmed H.O. 2013. Assessment of early‐maturing maize hybrids and testing sites using GGE biplot analysis. Crop Sci., 57(6): 2942-2950. https://doi.org/10.2135/cropsci2016.12.1014

Payak M.M. and Sharma R.C. 1985. Maize diseases and approaches to their management in India. I. J. Pest Manag., 31(4): 302-310. https://doi.org/10.1080/09670878509371006

Prasanna B.M., Cairns J.E., Zaidi P.H., Beyene Y., Makumbi D., Gowda M., Magorokosho C., Zaman-Allah M., Olsen M., Das A. and Worku M. 2021. Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theor. Appl. Genet., 134: 1729–1752. https://doi.org/10.1007/s00122-021-03773-7

Rodrigues L.R.F. and da Silva N. 2002. Combining ability in baby corn inbred lines (Zea mays L.). Crop Breed. Appl. Biotechnol., 2: 361-368. https://doi.org/10.12702/1984-7033.v02n03a06

SAS. 2012. Statistical Analysis System, User's Guide. Statistical. Version 9.1th ed. SAS. Inst. Inc. Cary. N.C. USA.

Singh R.K. and Chaudhary B.D. 1985. Biometrical Method in Quantitative Genetics Analysis. Kalyani Publishers, New Delhi.

Singh S., Bhatia R., Kumar R., Sharma K., Dash S. and Dey S.S. 2018. Cytoplasmic male sterile and doubled haploid lines with desirable combining ability enhances the concentration of important antioxidant attributes in Brassica oleracea. Euphytica, 214: 207. https://doi.org/10.1007/s10681-018-2291-3

Singh S., Dey S.S., Bhatia R., Kumar R., Sharma K. and Behera T.K. 2019. Heterosis and combining ability in cytoplasmic male sterile and doubled haploid based Brassica oleracea progenies and prediction of heterosis using microsatellites. PloS one, 14(8): e0210772. https://doi.org/10.1371/journal.pone.0210772

Singode A., Manivannan A., Ahmad B., Srivastava E. and Mahajan V. 2017. Heterotic grouping in early maturing Indian maize lines. Int. J. of Agric. Innov. Res., 6: 57-62.

Su J., Zhang F., Yang X., Feng Y., Yang X., Wu Y., Guan Z., Fang W. and Chen F. 2017. Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum. Euphytica, 213: 1-15. https://doi.org/10.1007/s10681-017-1837-0

Talukder M.Z.A., Karim A.N.M.S., Ahmed S. and Amiruzzaman M. 2016. Combining ability and heterosis on yield and its component traits in maize (Zea mays L.). Bangladesh J. Agri. Res., 41(3): 565-577. https://doi.org/10.3329/bjar.v41i3.29727

Tian H.Y., Channa S.A. and Hu S.W. 2017. Relationships between genetic distance, combining ability and heterosis in rapeseed (Brassica napus L.). Euphytica, 213: 1-11. https://doi.org/10.1007/s10681-016-1788-x

Vasal S.K., Srinivasan G., Beck D.L., Crossa J., Pandey S. and Leon-De C. 1992. Heterosis patterns of ninety two while tropical CIMMYT maize lines. Maydica 37: 259-270.

Wegary D., Vivek B. and Labuschagne M. 2013. Association of parental genetic distance with heterosis and specific combining ability in quality protein maize. Euphytica, 191: 205–216. https://doi.org/10.1007/s10681-012-0757-2

Wegary D., Vivek S.B. and Labuschagne M.T. 2013. Combining ability of certain agronomic traits in quality protein maize under stress and non-stress environments in eastern and southern Africa. Crop Sci., 54: 1004–1014. https://doi.org/10.2135/cropsci2013.09.0585

Wen W., Franco J., Chavez-Tovar V.H., Yan J. and Taba S. 2012. Genetic Characterization of a Core Set of a Tropical Maize Race Tuxpeño for Further Use in Maize Improvement. PLoS One, 7(3): e32626. https://doi.org/10.1371/journal.pone.0032626

Wu J.C., Xu C.X., Chen H.M., Tan J., Han X.R., Huang B.H. and Fan X.M. 2007. Studies on combining ability and heterotic grouping of 24 quality protein maize inbreds and four temperate representative inbreds of Chinese major heterotic groups. Sci. Agric., 40: 1288–1296.

Yan J.B., Shah T., Warburton M.L., Buckler E.S., McMullen M.D. and Crouch J. 2009. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One, 4: e8451. https://doi.org/10.1371/journal.pone.0008451

Yu C., Saravana Kumar K., Xia H., Gao J., Fu K. and Sun J. 2017. Occurrence and virulence of Fusarium spp. Associated with stalk rot of maize in North-East China. Physiol. Mol. Plant Path. 98: 1-8. https://doi.org/10.1371/journal.pone.0201588

Yu K., Wang H., Liu X., Xu C., Li Z., Xu X., Liu J., Wang Z. and Xu Y. 2020. Large-Scale analysis of combining ability and heterosis for development of hybrid maize breeding strategies using diverse germplasm resources. Front. Plant Sci., 11: 660. https://doi.org/10.3389/fpls.2020.00660