Evaluation of the genetic architecture utilizing simple sequence repeat (SSR) markers in deep water rice (Oryza sativa L.) landraces of Assam, India
Main Article Content
Abstract
Deep water rice (DWR) is an essential agricultural practice in flood-prone regions, supporting millions of farmers in Asia and Africa. However, its cultivation is under threat from changing climates, modern agricultural practices and socio-economic shifts. Although the state has quite a large collection of deep water rice (Oryza sativa L.), there is less exploration on the nature and extent of genetic diversity. Therefore, the present study was conducted to investigate the genetic diversity in a set of 92 deep water rice landraces by evaluating genetic polymorphism using 56 polymorphic SSR markers. A total of 139 alleles were detected, showing high polymorphism among all these diverse landraces. The major allele frequency of SSR loci comes in the range of 0.299 to 0.88. Expected heterozygosity varied from 0.21 and 0.74, whereas the observed heterozygosity ranged from 0.00 to 0.73. The PIC value ranged from 0.18 to 0.69 and the RM 206 marker was found to be most appropriate to discriminate among these landraces, owing to the highest polymorphic information content value of 0.69. AMOVA revealed that the principal molecular variance existed within populations (96%) rather than among populations (4%). The phylogenetic analysis clustered these accessions into 7 clusters, in which cluster II had a maximum of 27 genotypes, followed by cluster III and cluster I. Similarly, structure analysis based on Bayesian clustering grouped these diverse accessions into 7 sub-populations and also observed admixture in the accessions. The information accrued from the current study offers valuable insights for effective use in improving DWR varieties.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Anderson J.A., Churchill G.A., Autrique J.E., Tanksley S.D. and Sorrells M.E. 1993. Optimizing parental selection for genetic linkage maps. Genome, 36: 181–186.
Assefa T., Mahama A.A., Brown A.V. and Cannon E.K.S. 2019. A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Mol Breed., 39: 20. https://doi.org/10.1007/s11032-018-0920-0
Babu B.K., Meena V., Agarwal V. and Agrawal P. 2014. Population structure and genetic diversity analysis of Indian and exotic rice (Oryza sativa L.) accessions using SSR markers. Mol Biol Rep., 41(7): 4329–39. https://doi: 10.1007/s11033-014-3304-5
Choudhary B., Khan M.L. and Dayanandan S. 2013. Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the eastern Himalayan region of northeast India. Springer Plus, 2: 228. http://www.springerplus.com/content/2/1/228
Das B., Sengupta S., Parida S.K., Roy B., Ghosh M., Prasad M. and Ghose T.K. 2013. Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India.BMC Genet., 14: 7110. 1186/1471-2156-14-71
Dellaporta S.L., Wood J. and Hicks J.B. 1983. A plant DNA minipreparation: Version II. Plant Mol Biol Rep.,1: 19–21. https://doi.org/10.1007/BF02712670
Earl D.A. and VonHoldt B.M. 2012. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Cons Genet Res., 4: 359-361.https://doi.org/10.1007/s12686-011-9548-7
Frankham R., Ballou J.D. and Briscoe D.A. 2002. Introduction to conservation genetics. Cambridge University Press. doi:10.1017/S0016672304216913
Garris A.J., Tai T.H., Coburn J. , Kresovich S.and McCouch S. 2005. Genetic structure and diversity in Oryza sativa L. Genetics, 169: 1631–1638. doi: 10.1534/genetics.104.035642
Herrera T.G., Duque D.P., Almeida I.P., Nunez G.T., Pieters A.J., Martinez C.P. and Tohm J.M. 2008. Assessment of genetic diversity in Venezuelan rice cultivars using simple sequence repeats markers. Electron J Biotechnol., 11(5):3-4.
Hildebrand C.E., Torney D.C. and Wagner R.P. 1992. Informativeness of polymorphic DNA markers.Los Alamos Sci.,20: 100-102. doi:10.1007/978-1-62703-389-3_18
Kanawapee N., Sanitchon J., Srihaban P. and Theerakulpisut P. 2011. Genetic diversity analysis of rice cultivars (Oryza sativa L.) differing in salinity tolerance based on RAPD and SSR markers. Electron J Biotechnol.,14: 1-14. doi:10.2225/vol14-issue6-fulltext-4
Lin E., Zhuang H., Yu J., Liu X., Huang H., Zhu M. and Tong Z. 2020. Genome survey of Chinese fir (Cunninghamia lanceolata): Identification of genomic SSRs and demonstration of their utility in genetic diversity analysis. Sci Rep., 10: 4698. https://doi.org/10.1038/s41598-020-61611-0
Matin S., Ashrafuzzaman M., Islam M.M., Sikdar S.U. and Zobayer N. 2012. Molecular marker based (SSR) genetic diversity analysis in deep water rice germplasms of Bangladesh. Int J Biosci., 2: 64-72. https://doi.org/10.1007/s12298-016-0377-8
McCouch S.R., Chen X., Panaud O., Temnykh S., Xu Y., Cho Y.G., Huang N., Ishii T. and Blair M. 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol., 35: 89–99. PMID: 9291963
McCouch S., Teytelman L., Xu Y., Lobos K.B., Clare K., Walton M., Fu B., Maghirang R., Li Z. and Xing Y. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) DNA Res., 9: 199-207. doi: 10.1007/BF02172406
Pachauri V., Taneja N., Vikram P., Singh N.K. and Singh S. 2013. Molecular and morphological characterization of Indian farmers rice varieties (Oryza sativa L.). Aust J Crop Sci.,7(7): 923.
Panaud O., Chenayd X. and McCouch S.R. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.) Mol Gen Genet., 252: 597-607. doi: 10.1007/BF02172406
Perrier X., Flori A. and Bonnot F. 2003. Methods for Data Analysis. In: Hamon Seguin P, M., Perrier X., Glazmann J.C., Eds. Genetic Diversity of Cultivated Tropical Plants, Science Publisher Inc and Cirad, Montpellier, 31-63.
Pritchard J.K., Stephens M. and Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945–959. doi: 10.1093/genetics/155.2.945
Rohilla M., Roy P., Chowdhury D., Sharma K.K., Saikia P., Sen P., Singh N.K. and Mondal T.K. 2019. Bao Dhan of Assam: organically grown indigenous rice slated to increase farmer’s income. Curr Sci., 116:5.
Rohilla M., Singh N., Mazumder A., Sen P., Roy P., Chowdhury D., Singh N.K. and Mondal T.K. 2020. Genome wide association studies using 50K rice genic SNP chip unveil genetic architecture foranaerobic germination of deep water rice population of Assam, India. Mol Genet Genom., 295: 1211–1226. https://doi.org/10.1007/s00438-020-01690-w
Rohlf F.2000. NTSYS-PC, Numerical Taxonomy System for the PC Exeter Software, Version 2.1. Applied Biostatistics Inc., Setauket.
Singh B., Singh N., Mishra S., Tripathi K., Singh B.P., Rai V., Singh A.K. and Singh N.K. 2018. Morphological and molecular data reveal three distinct populations of Indian wild rice Oryza rufpogon Grif. Species Complex. Front Plant Sci., 9: 123.https://doi.org/10.3389/fpls.2018.00123
Singh N., Choudhury D., Tiwari G., Singh A.K., Kumar S., Srinivasan K., Tyagi R.K., Sharma A., Singh N. and Singh R. 2016. Genetic diversity trend in Indian rice varieties: an analysis using SSR markers. BMC Genet., 17: 127. https://doi.org/10.1186/s12863-016-0437-7
Siwach P., Jain S., Saini N., Chowdhury V.K. and Jain R.K. 2004. Allelic diversity among Basmati and non-Basmati long-grain indica rice varieties using microsatellite markers. J. Plant Biochem Biotechnol., 13: 25-32. https://doi.org/10.1007/BF03263186
Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S. and McCouch S.R. 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res., 11: 1441–1452. doi: 10.1101/gr.184001