Folate profiling and characterization of sub-tropically adapted maize inbreds using folate-metabolism related genes
Main Article Content
Abstract
Folates, also known as vitamin B9, are vital for the normal growth and development of humans. In this study, we assessed 48 specialty and biofortified maize inbred lines for folate content and characterized them using markers specific to 78 candidate genes governing folate metabolism. Folate content, measured as the sum of 5-formyl-tetrahydrofolate (5-FTHF) and 5-methyl-tetrahydrofolate (5-MTHF), varied widely from 21.4 to 98.0 μg/100g, with a mean of 55.7 μg/100 g. Analysis using 78 SSR markers indicated a high conservation of folate-related genes across the genotypes. A total of 116 alleles were detected with a mean of 2.27 alleles/locus (range: 2–5). Among the markers, Fo-SSR-17 had five alleles, showing the highest discriminating power. The mean polymorphism information content (PIC) was 0.36 with a range from 0.19 (Fo-SSR-62) to 0.59 (Fo-SSR-50). Diversity analysis grouped the 48 genotypes into three distinct clusters, with a dissimilarity coefficient ranging from 0.08 to 0.34 (mean: 0.22). Single marker analysis found four markers significantly associated with folate content. Further, the haplotype analysis identified Hap6 (ABBB), Hap8 (ABHB), and Hap5 (ABAA) as superior haplotypes exhibiting higher folate content with mean values of 87.6 μg/100 g, 83.7 μg/100 g and 79.5 μg/100 g, respectively. Identification of diverse high folate inbred lines of maize inbreds and superior haplotypes offers potential for use in maize folate biofortification programs. This is the first report on characterization using a candidate gene for folate accumulation in subtropical genetic background.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Akwaa Harrison O., Ifie I., Nkwonta C., Dzandu B. A., Gattor A. O., Adimado E. E., Odoi K. K., Aziavor B., Saalia F. K. and Steiner-Asiedu M. 2024. Knowledge, awareness, and use of folic acid among women of childbearing age living in a peri-urban community in Ghana: a cross-sectional survey. BMC Pregnancy ChildB., 24(1): 241. https://doi.org/10.1186/s12884-024-06408-z
Bekaert S., Storozhenko S., Mehrshahi P., Bennett M. J., Lambert W. E., Gregory J. F., Schubert K., Hugenholtz J., Van Der Straeten D. and Hanson A. D. 2008. Folate biofortification in food plants. Trends Plant Sci., 13(1): 28-35. https://doi.org/10.1016/J.TPLANTS.2007.11.001
Bjarnason M. and Vasal S. K. 1992. Breeding of quality protein maize (QPM). In Plant Breeding Reviews. J. Janick (Ed). https://doi.org/10.1002/9780470650363.ch7
Blancquaert D., Storozhenko S., Loizeau K., De Steur H., De Brouwer V., Viaene J. and Van Der Straeten D. 2010. Folates and folic acid: From fundamental research toward sustainable health. Crit. Rev. Plant Sci., 29(1): 14-35. https://doi.org/10.1080/07352680903436283
Blancquaert D., Steur H.D., Gellynck X., Van Der Straeten D. 2014. Present and future of folate biofortification of crop plants. J. Exp. Bot., 65(4): 895-906. https://doi.org/10.1093/jxb/ert483
Blount B. C., Mack M. M., Wehr C. M., MacGregor J. T., Hiatt R. A., Wang G., Wickramasinghe S. N., Everson R. B. and Ames B. N. 1997. Folate deficiency causes uracil mis-incorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc. Natl. Acad. Sci. USA., 94(7): 3290-3295. https://doi.org/10.1073/pnas.94.7.3290
Erenstein O., Jaleta M., Sonder K., Mottaleb K.A. and Prasanna B.M. 2022. Global maize production, consumption and trade: trends and R&D implications. Food Secur., 14: 1295-1319. https://doi.org/10.1007/s12571-022-01288-7
FAOSTAT 2022. Food and Agriculture Organization of United Nations. https://www.fao.org/faostat/en/#data/QCL/visualize
Gorelova V., Bastien O., De Clerck O., Lespinats S., Rébeillé F. and Van Der Straeten D. 2019. Evolution of folate biosynthesis and metabolism across algae and land plant lineages. Sci. Reports, 9(1): 5731. https://doi.org/10.1038/s41598-019-42146-5
Guo W., Lian T., Wang B., Guan J., Yuan D., Wang H., Safiul Azam F. M., Wan X., Wang W., Liang Q., Wang H., Tu J., Zhang C. and Jiang L. 2019. Genetic mapping of folate QTLs using a segregated population in maize. J. Integr. Plant Biol., 61(6): 675-690. https://doi.org/10.1111/jipb.12811
Islam S., Liu J., Jiang L., Zhang C. and Liang Q. 2021. Folate content in fresh corn: Effects of harvest time, storage and cooking methods. J. Food Compos. Anal., 103: 104123. https://doi.org/10.1016/j.jfca.2021.104123
Johnson, M. A. 2007. If high folic acid aggravates vitamin B12 deficiency what should be done about it?. Nutr. Rev., 65(10): 451-458. https://doi.org/10.1111/j.1753-4887.2007.tb00270.x
Kassambara A. 2023. rstatix: Pipe-Friendly framework for basic statistical tests. R package version 0.7.2. https://rpkgs.datanovia.com/rstatix/
Li Q., Yang X., Xu S., Cai Y., Zhang D., Han Y., Li L., Zhang Z., Gao S., Li, J. and Yan J. 2012. Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS One 7(5): e36807. https://doi.org/10.1371/journal.pone.0036807
Lian T., Guo W., Chen M., Li J., Liang Q., Liu F., Meng H., Xu B., Chen J., Zhang C. and Jiang L. 2015. Genome-wide identification and transcriptional analysis of folate metabolism-related genes in maize kernels. BMC Plant Biol., 15: 204. https://doi.org/10.1186/s12870-015-0578-2
Lian T., Wang X., Li S., Jiang H., Zhang C., Wang H. and Jiang L. 2022. Comparative transcriptome analysis reveals mechanisms of folate accumulation in maize grains. Inter. J. Mol. Sci., 23(3): 1708. https://doi.org/10.3390/ijms23031708
Liu K. and Muse S. V. 2005. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21: 2128-2129. https://doi.org/10.1093/bioinformatics/bti282
Lucock M. and Yates Z. 2009. Folic acid fortification: a double-edged sword. Curr. Opin. Clin. Nutr. Metab. Care, 12(6): 555-564. https://doi.org/10.1097/MCO.0b013e32833192bc
Lv G., Chen X., Ying D., Li J., Fan Y., Wang B. and Fang R. 2022. Marker-assisted pyramiding of γ-tocopherol methyltransferase and glutamate formiminotransferase genes for development of biofortified sweet corn hybrids. Peer J., 10, e13629. https://doi.org/10.7717/peerj.13629
Murray M. G. and Thompson W. F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res., 8(19): 4321-4325. https://doi.org/10.1093/nar/8.19.4321
Perrier X., Flori A. and Bonnot F. 2003. Data analysis methods. In: Hamon, P, Seguin, M, Perrier, X and Glaszmann, JC (eds) Genetic diversity of cultivated tropical plants. Montpellier: Enfield Science Publishers 43-76.
Plumptre L., Masih S. P., Ly A., Aufreiter S., Sohn K. J., Croxford R., Lausman A. Y., Berger H., O'Connor D. L. and Kim Y. I. 2015. High concentrations of folate and unmetabolized folic acid in a cohort of pregnant Canadian women and umbilical cord blood. Am. J. Clin., 102(4): 848-857. https://doi.org/10.3945/ajcn.115.110783
Raboy, V., Gerbasi, P. F., Young, K. A., Stoneberg, S. D., Pickett, S. G., Bauman, A. T., Murthy, P. P., Sheridan, W. F. and Ertl, D. S. 2000. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol., 124(1):355-368. https://doi.org/10.1104/pp.124.1.355
Reynolds T. L., Nemeth M. A., Glenn K. C., Ridley W. P. and Astwood J. D. 2005. Natural variability of metabolites in maize grain: differences due to genetic background. J. Agric. Food Chem., 53(26): 10061-10067. https://doi.org/10.1021/jf051635q
Scholl T. O. and Johnson W. G. 2000. Folic acid: influence on the outcome of pregnancy. Am. J. Clin., 71(5 Suppl): 1295S-303S. https://doi.org/10.1093/ajcn/71.5.1295s
Senior M. L., Murphy J. P., Goodman M., and Stuber C. W. 1998. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci., 38: 1088-1098. https://doi.org/10.2135/CROPSCI1998.0011183X003800040034X
Shahid M, Lian T, Wan X, Jiang L, Han L, Zhang C and Liang Q 2020. Folate monoglutamate in cereal grains: Evaluation of extraction techniques and determination by LC-MS/MS. J. Food Compos. Anal., 91(14): 103510. https://doi.org/10.1016/j.jfca.2020.103510
Shan Q., Liu J., Li W., Wang H., Hu X., Li T., Hu J., Guo X. and Liu R.H. 2019. Comprehensive evaluation of biosynthesis, accumulation, regulation of folate and vitamin C in waxy maize (Zea mays L. var. ceratina) with kernel development. J. Cereal Sci., 87: 215-224. https://doi.org/10.1016/j.jcs.2019.04.003
Song L., Yu D., Zheng H., Wu G., Sun Y., Li P., Wang J., Wang C., Lv B. and Tang X. 2021. Weighted gene co-expression network analysis unveils gene networks regulating folate biosynthesis in maize endosperm. 3 Biotech 11(441). https://doi.org/10.1007/s13205-021-02974-7
Storozhenko S., Ravanel S., Zhang G., Rébeillé F., Lambert W. E. and Straeten D. V. 2005. Folate enhancement in staple crops by metabolic engineering. Trends Food Sci. Technol., 16: 271-281. https://doi.org/10.1016/j.tifs.2005.03.007
Strobbe S. and Van Der Straeten D. 2017. Folate biofortification in food crops. Curr. Opin. Biotechnol., 44: 202-211. https://doi.org/10.1016/j.copbio.2016.12.003
USDA-ARS (US Department of Agriculture, Agricultural Research Service) 2012. USDA National nutrient database for standard reference. Release 25. Nutrient Data Laboratory Home. http://www.ars.usda.gov/ba/bhnrc/ndl
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://doi.org/10.1007/978-3-319-24277-4
Xiao Y., Yu Y., Xie L., Li K., Guo X., Li G., Liu J., Li G. and Hu J. 2022. A genome wide association study of folates in sweet corn kernels. Front. Plant Sci., 13: 1004455. https://doi.org/10.3389/fpls.2022.1004455
Yang X., Gao S., Xu S., Zhang Z., Prasanna B. M., Li L., Li J. and Yan J. 2011. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Molecular Breed., 28: 511-526. https://doi.org/10.1007/s11032-010-9500-7
Zunjare R. U, Hossain F., Muthusamy V., Baveja A., Chauhan H. S., Bhat J. S., Saha S. and Gupta H. S. 2018. Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-e-cyclase and opaque2 genes. Front. Plant Sci., 9: 178. https://doi.org/10.3389/fpls.2018.00178