Gibberellic acid and Boron application synergize enhanced seed production in a thermo-sensitive genetic male sterility (TGMS) based novel hybrid, Pusa Jawahar Rice Hybrid 56

Main Article Content

Ramvilas Pashwan Vislavath
MB Arun Kumar
Chandu Singh
S. Gopala Krishnan
K. K. Vinod
M. Nagarajan
Vijay Dunna
Kishor Gaikwad

Abstract

The commercial adoption of hybrid rice is often constrained by low outcrossing rates in male sterile lines, necessitating agronomic interventions to improve pollination efficiency, outcrossing, and hybrid seed production. This study investigates the impact of gibberellic acid (GA₃) and boron on floral traits and yield-related parameters in the TGMS-based hybrid rice, Pusa PJRH 56. Multi-location trials were conducted across three agroclimatic zones represented by sites, Aduthurai, New Delhi, and Jabalpur, to evaluate the consistency of treatment effects under varying environmental conditions. Significant trait variations were observed across treatments and locations. Compared to the control, foliar application of GA₃ (200 ppm) and boron (1%) significantly enhanced key floral traits in both the parental lines. Stigma emergence was improved by 30.3%, glume opening angle by 51.2%, stigma receptivity by 21.3%in the female parent, and anther breadth by 13.1%and anther width by 21.3%in the male parent. These improvements facilitated increased pollen exposure and receptivity, which are critical for successful hybrid seed production. Additionally, agronomic traits such as plant height, panicle exertion, filled seeds per panicle, and seed yield per plot showed significant increases of 32.2, 87.4, 55.6, 152.6, and 103.0%, respectively. These findings demonstrate that GA₃ and boron work synergistically to improve floral development, seed formation, and overall seed yield. This study provides strong evidence for the exogenous application of GA3 and boron as an effective agronomic strategy to enhance hybrid seed production and overcome the limitations associated with TGMS-based hybrid rice cultivation.

Downloads

Download data is not yet available.

Article Details

How to Cite
Vislavath, R. P., Kumar, M. A. ., Singh, C., Krishnan, S. G. ., Vinod, K. K. ., Nagarajan, M. ., Dunna, V., & Gaikwad, K. (2025). Gibberellic acid and Boron application synergize enhanced seed production in a thermo-sensitive genetic male sterility (TGMS) based novel hybrid, Pusa Jawahar Rice Hybrid 56. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 85(03), 398–406. https://doi.org/10.31742/ISGPB.85.3.5
Section
Research Article

References

Akhter M., Ali S S., Zahid M.A. and Ramazan M. 2008. Use of TGMS lines for two line rice hybrids in Pakistan. J. Plant Sci., 18(2-3): 83-85. http://thejaps.org.pk/docs/18_2-3_2008/08-820.pdf

Ali J, Siddiq E A, Zaman F U., Abraham M J. and Ahmed I. 1995. Identification and characterization of temperature sensitive genic male sterile sources in rice (Oryza sativa L.). Indian J. Genet., 55: 243-259. https://www.isgpb.org/journal/index.php/ IJGPB/article/view/2656

Ashraf H., Ghouri F., Baloch F S., Nadeem M A., Fu X. and Shahid M Q. 2024. Hybrid rice production: A worldwide review of floral traits and breeding technology, with special emphasis on China. Plants, 13(5): 578. https://doi.org/10.3390/plants13050578

Broeke J., Perez J M M. and Pascau J. 2015. Image processing with ImageJ. Packt Publishing, Brimingham, UK. pp 256. ISBN: 978-1785889837. https://www.packtpub.com/en-us/product/image-processing-with-imagej-second-edition-9781785881589

Castro-Camba R., Sánchez C., Vidal N., and Vielba J M. 2022. Plant Development and Crop Yield: The Role of Gibberellins. Plants., 11(19): 2650. https://doi.org/10.3390/plants 11192650

Cheng S H., Si H M., Zhuo L S. and Sun Z X. 1996. Classification of environmentally induced genetic male sterile lines of rice based on their fertility responses to photoperiod and temperature. J. Agric. Sci., 127: 161-167. https://doi.org/10.1017/S0021859600077935

Chhun T., Aya K., Asano K., Yamamoto E., Morinaka Y., Watanabe M., Kitano H., Ashikari M., Matsuoka M. and Ueguchi-Tanaka M. 2007. Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell., 19(12): 3876-3888. https://doi.org/10.1105/ tpc.107.054759

de Abreu Neto J B., Hurtado-Perez M C., Wimmer M A. and Frei M. (2017). Genetic factors underlying boron toxicity tolerance in rice: genome-wide association study and transcriptomic analysis. J. Exp. Bot., 68(3): 687-700. https://doi.org/10.1093/ jxb/erw423

ElShamey E A., Hamad, H S., Alshallash K S., Alghuthaymi M A., Ghazy M I., Sakran R M., Selim M E., ElSayed M A., Abdelmegeed T M., Okasha S A. and Behiry S I. (2022). Growth regulators improve outcrossing rate of diverse rice cytoplasmic male sterile lines through affecting floral traits. Plants, 11(10): 1291. https://doi.org/10.3390/ plants11101291

FAOSTAT. 2023. Rice statistics. https://www.fao.org/faostat/en/#data/QCL [accessed 10 April 2024]

Garcia D., Fitz Gerald J N. and Berger F. 2005. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size. Plant Cell., 17(1): 52-60. https://doi.org/10.1105/tpc.104.027136

Gavino R B., Pi Y. and Abon Jr C C. 2008. Application of gibberellic acid (GA3) in dosage for three hybrid rice seed production in the Philippines. J. Agric. Technol., 4(1): 183-192. http://ijat-aatsea.com/pdf/JUNE_v4_n1_08/IJAT2008_15_Gavino.pdf

Gowri S. 2005. Physiological studies on aerobic rice (Oryza sativa L.). M.Sc. Thesis, Tamil Nadu Agriculture University, Coimbatore, India. https://www.scirp.org/reference/ referencespapers?referenceid=2383414

Haifaa M D I. and Moses C. 2022. Effects of foliar and soil application of gibberellic acid (GA3) at different growth stages on agronomic traits and yield of rice (Oryza sativa L.). J. Agric. Sci., 14(6): 55-67. https://doi.org/10.5539/jas.v14n6p55

Hamad H S H., Ghoneim A M., Zidan A A. and Gomaa M A. 2021a. Effect of N levels and some plant growth regulators on hybrid rice (Oryza sativa L.) seed production. Appl. Ecol. Environ. Res., 19(4): 3227-3238. https://aloki.hu/pdf/1904_32273238.pdf

Hamad H., Gewaily E., Ghoneim A., Shehab M. and El-kholly N. 2021b. Improvement ability of male parent by gibberellic acid application to enhancing the outcrossing of cytoplasmic male sterility rice lines. Acta Agric. Slov., 117(3): 1-11. https://doi.org/ 10.14720/aas.2021.117.3.2114

Harshitha B S., Singh V J., Nandakumar S., Shekhawat S., Dixit B K., Ragi S., Saran D., Vinod K K., Krishnan S G., Ellur R K., Nagarajan M., Bollinedi H., Mondal T K., Singh A K. and Bhowmick P K. 2024. Uncovering QTLs for uppermost internode length and panicle exsertion in rice (Oryza sativa L.). Front. Sustain. Food Syst., 8: 1470871. https://doi.org/10.3389/fsufs.2024.1470871

Hussain J A. 1996. Studies on Thermosensitive Genic Male Sterile (TGMS) lines in rice (Oryza sativa L.). Tamil Nadu Agricultural University, Coimbatore. Accessed online on 30 March 2025 from https://krishikosh.egranth.ac.in/handle/1/5810160167

Hussain M., Khan M A., Khan M B., Farooq M. and Farooq S. 2012. Boron application improves growth, yield and net economic return of rice. Rice Science, 19(3): 259-262. https://doi.org/10.1016/S1672-6308(12)60049-3

ISTA 2024. Thousand-seed weight (TSW) determination. International Rules for Seed Testing, 2024 (1): 1-10(10). https://doi.org/10.15258/istarules.2023.10

Jagadeeswari P., Sharma S P. and Dadlani M. 2004. Effect of different chemicals on traits favouring outcrossing and optimization of GA₃ for seed production of cytoplasmic male sterile line in hybrid rice. Seed Sci. Technol., 17: 473-483. https://doi.org/10.15258/ sst.2004.32.2.17

Jathar V., Saini K., Chauhan A., Rani R., Ichihashi Y. and Ranjan A. 2022. Spatial control of cell division by GA-OsGRF7/8 module in a leaf explains the leaf length variation between cultivated and wild rice. New Phytol., 234(3): 867-883. https://doi.org/10.1111/nph.20246

Kanimozhi P., Pushpam R., Binodh A K., Kannan R. and Pillai M A. 2018. Evaluation of TGMS lines for good floral and out crossing related traits in rice. Electron. J. Plant Breed., 9(4): 1497-1502. https://www.ejplantbreeding.org/index.php/EJPB/article/ view/3043

Lever J., Krzywinski M. and Altman N. 2017. Principal component analysis. Nat. Methods., 14(7): 641-642. https://doi.org/10.1038/nmeth.4346

Lopez M T. and Virmani S S. 2000. Development of TGMS lines for developing two-line rice hybrids for the tropics. Euphytica., 114(3): 211-215. https://doi.org/10.1023/A: 1003947219699

Lordkaew S., Konsaeng S., Jongjaidee J., Dell B., Rerkasem B. and Jamjod S. 2013. Variation in responses to boron in rice. Plant Soil., 363: 287-295. https://doi.org/10.1007/s11104-012-1323-3

Mahesh G., Mohan Y C., Naik D S., Reddy S N., Krishna L. and Ramesh T. 2022. Evaluation of cytoplasmic male sterile lines for yield, stigma receptivity and influence of floral traits on the outcrossing rate in rice (Oryza sativa L.). J. Crop Weed., 18(2): 144-153. https://doi.org/10.22271/09746315.2022.v18.i2.1584

Mao C X., Virmani S S. and Kumar I. (1998). Technological innovations to lower the costs of hybrid rice seed production. In: Advances in hybrid rice technology (eds: Virmani S S., Siddiq E A. and Muralidharan K.) Proceedings of the 3rd International Symposium on Hybrid Rice, 14-16 November 1996, Hyderabad, India. Manila (Philippines): International Rice Research Institute. 443 p. http://books.irri.org/9712201155 _content.pdf

McIntosh M S. (1983). Analysis of combined experiments. Agron. J., 75: 153-155. https://doi.org/10.2134/agronj1983.00021962007500010041x

Nieuwenhuis J., Bouman B A M. and Castaneda A. 2000. Crop–water responses of aerobically grown rice, preliminary results of pot experiments. In: Bouman B A M., Hengsdijk H., Hardy B., Bindraban P S., Tuong T P. and Ladha J K. (eds) Water wise rice production. Proceedings of a thematic workshop on water-wise rice production. 8–11 April 2002. IRRI Headquarters in Los Banos, Philippines, pp 177 - 186. http://books.irri.org/ 9712201821_content.pdf

Pandey S. 2000. Studies on synchroniazation of flowering, seed production and storability of parental lines of hybrid rice. Ph.D. thesis submitted to Post Graduate School, Indian Agricultural Research Institute, New Delhi, India.

Patel S K., Singh R P., Shrivastava S., Pandey A K. and Chandel S K S. 2019. Effect of foliar application of boron at different stages of crop growth on nutrient utilization and yield of rice (Oryza sativa L.). Indian J. Sci. Res., 9(2): 1-6. http://dx.doi.org/10.32606/ IJSR.V9.I2.00001

Prasad M N., Virmani S S. and Gumutan A D. 1988. Substituting urea and boric acid for GA3 in hybrid rice seed production. IRRN., 13: 9-10. http://books.irri.org/IRRN13no6 _content.pdf

Ramakrishna S., Swamy B P M., Mishra B., Virakthamath B C. and Ahmed M.I. 2006. Characterization of thermos sensitive genetic male sterile lines for temperature sensitivity, morphology and floral biology in rice (Oryza sativa L.). Asian J. Plant Sci., 5(3): 421-428. https://scialert.net/abstract/?doi=ajps.2006.421.428

Rashid A., Yasin M., Ali M A., Ahmad Z. and Ullah R. 2007. An alarming boron deficiency in calcareous rice soils of Pakistan: boron use improves yield and cooking quality. In: Xu F (ed) Advances in plant and animal boron nutrition. Proc 3rd international symposium on all aspects of plant and animal boron nutrition, Wuhan, China, 9–13 Sep 2005. Springer, Dordrecht, pp 103–116. https://www.researchgate.net/profile/Amrit-Singh-2/publication/284028130_Boron_deficiency_and_its_nutrition_of_groundnut_in_India/links/573d6c0708ae9f741b2ecfd4/Boron-deficiency-and-its-nutrition-of-groundnut-in-India.pdf

Rehman A., Farooq M., Rashid A., Nadeem F., Stuerz S., Asch F., Bell R W. and Siddique H M K. 2018. Boron nutrition of rice in different production systems. A review. Agron. Sustain. Dev., 38: 25. https://doi.org/10.1007/s13593-018-0504-8

Riaz M., Iqbal M., Latif T., Sabar M., Shahzadi H S N., Bibi T. and Raza, A. 2019. Influence of GA3 on seed multiplication of CMS lines used for hybrid rice development. Afr. J. Plant Sci., 13(7): 195-200. https://doi.org/10.5897/AJPS2019.1762

Salgotra R K., Gupta B B. and Ahmed M I. (2012). Characterization of thermo-sensitive genic male sterility (TGMS) rice genotypes (Oryza sativa L.) at different altitudes. Aust. J. Crop Sci., 6(6): 957-962. https://search.informit.org/doi/10.3316/informit.733979 612571105

Sauter M. and Kende H. 1992. Gibberellin-induced growth and regulation of the cell division cycle in deepwater rice. Planta., 188(3): 362-368. https://doi.org/10.1007/BF00192803

Spielman D J., Kolady D E. and Ward P S. 2013. The prospects for hybrid rice in India. Food Secur., 5: 651-665. https://doi.org/10.1007/s12571-013-0291-7

Srimathi K., Pillai M A., Aananthi N. and Rajababu C. 2019. Genetic studies on TGMS lines for development of superior two line rice hybrids. Electron. J. Plant Breed, 10(2): 620-626. https://www.ejplantbreeding.org/index.php/EJPB/article/view/3257

Thu B V., Chakrabarty S K., Sharma S P. and Dadlani, M. (2008). Studies on environmental conditions and pollination management in hybrid rice seed production. Indian J. Genet., 68(04): 426–434. https://www.isgpb.org/journal/index.php/IJGPB/article/view/1199

Uraguchi S. and Fujiwara T. 2011. Significant contribution of boron stored in seeds to initial growth of rice seedlings. Plant Soil, 340: 435-442. https://doi.org/10.1007/s11104-010-0614-9

Valerien O P., Valera H G., Mishra A K. and Balié J. 2024. Future of rice in Asia: Perspectives and opportunities, 2050. In: Food Security Issues in Asia (Edt: Teng P.). World Scientific Publishing. Singapore. pp. 108-138. https://www.worldscientific.com/ worldscibooks/10.1142/13469?srsltid=AfmBOop_gD3jkg3G0w9eYk5DpMHejI6vfED_pM1Bd6LzwHzPaO5Cxbtb - t=aboutBook

Verma R L., Katara J L., Sarkar S., Reshmiraj K R., Parameswaran C., Devanna D., Jena D., Rout D., Singh V., Mohapatra S D., Mukherjee A K., Samantaray S., Patra B C. and Nayak A K. 2021. Hybrid rice technology: a profitable venture for improving livelihood of rice farming in India. NRRI Research Bulletin No. 31, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India. pp. 44. https://icar-nrri.in/wp-content/uploads/2021/08/Research-Bulletin-No-31-Hybrid-Rice-Seed-Production-Technology .pdf

Xu S. and Li B. 1988. Managing hybrid rice seed production. In: Hybrid Rice: Proceeding of international symposium in hybrid rice, Changsha (China), IRRI, Manila, Philippines, pp.157-164. http://books.irri.org/9711042088_content.pdf

Yang X D., Sun S Q. and Li Y Q. 1999. Boron deficiency causes changes in the distribution of major polysaccharides of pollen tube wall. Acta Bot. Sin., 41: 1169-1176. https://doi.org/10.1093/treephys/23.5.345

Yuan L P. 1987. Conception of breeding strategy for hybrid rice. Hybrid Rice., 1: 1-3.

Zhang X., Wang Q., Fan G., Tang L., Shao Y., Mao B., Lv Q. and Zhao B. 2023. Utilizing differences in bTH tolerance between the parents of two-line hybrid rice to improve the purity of hybrid rice seed. Front. Plant Sci., 14: 1217893. https://doi.org/10.3389/fpls.2023.1217893

Most read articles by the same author(s)

1 2 3 4 5 > >>