Multivariate analysis of drought stress indices to assess bread wheat (Triticum aestivum L.) germplasm under rainfed conditions
Main Article Content
Abstract
Water stress impacts wheat yields and poses a serious threat in stabilizing the global food supply. In the present investigation, 71 diverse bread wheat germplasm accessions were evaluated at Karnal and Hisar locations under normal and water stress (four environments) conditions during Rabi, 2022-23. The overall pooled grain yield showed a reduction of 15.6% under water stress, while days to heading, tiller count and plant height were reduced by 8.1%, 15.5% and 12.5%, respectively. The genotypes, namely K8027, HI1531, PBW175, UAS375, WH1142, HI1612, K1317, etc., showed higher NDVI values both at heading and grain filling stages under stress conditions. Grain yield (GY) showed positive and significant associations with 1000 grain wt. (r=0.62***) and tillers/m (r=0.53***). In the principal component biplots, 14 drought stress indices were grouped into three clusters. The genotypes K9465, HD2987 and K8027 were the three top rankers for drought susceptibility index (DSI), however showed yield reduction of 10.4%, 5.5% and 17.4% over the best check NIAW3170. Most of the drought stress indices considered only the grain yield reduction as selection criteria; however, the yield potential coupled with drought tolerance is desired to get favourable gene constellations. The drought resistance index (DRI) was highly successful in identifying high-yielding and drought-tolerant genotypes. The genotypes viz., HD3171, MP1358, 20th HTWYT-48, 29th SAWYT-316 and WAP91 appeared to be high yielding and drought-tolerant. The traits, such as 1000 grain weight, grains/spike and tillers count can be targeted as on-farm selection criteria under water stress and to train genomic models.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Adel S. and Carels N. 2023. Plant tolerance to drought stress with emphasis on wheat. Plants, 12(11): 2170. https://doi.org/10.3390/plants12112170.
Allahverdiyev T. I., Rzayev F. H., Gasimov E. K. and Huseynova I. M. 2025. Effect of drought stress on some biochemical parameters and ultrastructure of bread wheat genotypes. Cereal Res Commun, 1-15. https://doi.org/10.1007/s42976-025-00681-0
Arif M., Haroon M., Nawaz A. F., Abbas H., Xu R. and Li L. 2025. Enhancing wheat resilience: biotechnological advances in combating heat stress and environmental challenges. Plant Mol Biol., 115(2): 41. https://doi.org/10.1007/s11103-025-01569-7
Balla M. Y., Kamal N. M., Tahir I. S. A., Gorafi Y. S. A., Abdalla M. G. A and Tsujimoto H. 2025. Intraspecific variation for heat stress tolerance in wild emmer-derived durum wheat populations. Front Plant Sci., 16: 1523562. Doi: 10.3389/fpls.2025.1523562
Bapela T., Shimelis H., Tsilo T. J and Mathew I. 2022. Genetic improvement of wheat for drought tolerance: Progress, challenges and opportunities. Plants 11(10): 1331. https://doi.org/10.3390/plants11101331
Budak H., Kantar M. and Yucebilgili K. 2013. Drought tolerance in modern and wild wheat. Sci World J., 2013(1): 548246. https://doi.org/10.1155/2013/548246
FAOSTAT. 2025. Crop production data from https://www.fao.org/faostat/en/#data/QCL. Accessed on July 11, 2025.
Farooq M., Hussain M. and Siddique K. H. 2014. Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci., 33(4): 331-349. https://doi.org/10.1080/07352689.2014.875291
Fischer R. A. and Maurer R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agril Res., 29(5): 897-912. https://doi.org/10.1071/AR9780897
Fleury D., Jefferies S., Kuchel H. and Langridge P. 2010. Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot., 61(12): 3211-3222. https://doi.org/10.1093/jxb/erq152
Garg B., Jaiswal J. P., Misra S., Tripathi B. N. and Prasad M. 2012. A comprehensive study on dehydration-induced antioxidative responses during germination of Indian bread wheat (Triticum aestivum L. em Thell) cultivars collected from different agro-climatic zones. Physiol Mol Biol Plants., 18: 217-228. https://doi.org/10.1007/s12298-012-0117-7
Kadam S., Singh K., Shukla S., Goel S., Vikram P., Pawar V., et al. 2012. Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Funct Integr Genomics, 12: 447-464. https://doi.org/10.1007/s10142-012-0276-1
Kumar J., Gunapati S., Kianian S. F. and Singh S. P. 2018. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance. Protoplasma 255: 1487-1504. https://doi.org/10.1007/s00709-018-1237-x
Kumar S., Vishwakarma H., Panzade K. P., Jaiswal N. and Aggarwal D. 2025. Stress-associated gene TaTT1 from wheat confers heat stress tolerance in the prokaryotic system and transgenic tobacco (Nicotiana tabacum L.). In Vitro Cellular Develop Biol Plant., 1-15. doi: 10.1007/s11627-024-10479-0
Mall A., Swain P., Das S., Singh O. and Kumar A. 2011. Effect of drought on yield and drought susceptibility index for quality characters of promising rice genotypes. Cereal Res Commun, 39(1): 22-31. https://doi.org/10.1556/crc.39.2011.1.3
Manoj N. V., Chaudhary H. K., Sharma P., Singh K. and Sood V. K. 2020. Revealing allelic expressivity and distribution of genes for hybrid necrosis in north-west Himalayan diverse wheat (Triticum aestivum L.) gene pools. Cereal Res Commun, 48: 25-31. https://doi.org/10.1007/s42976-019-00008-w
Mohammadi R. 2016. Efficiency of yield-based drought tolerance indices to identify tolerant genotypes in durum wheat. Euphytica, 211(1): 71-89. https://doi.org/10.1007/s10681-016-1727-x
Mohammadi R. 2018. Breeding for increased drought tolerance in wheat: a review. Crop Pasture Sci., 69(3): 223-241. https://doi.org/10.1071/CP17387
Mohammed S., Huggins T., Mason E., Beecher F., Chick C., Sengodon P., et al. 2021. Mapping the genetic loci regulating leaf epicuticular wax, canopy temperature, and drought susceptibility index in Triticum aestivum. Crop Sci., 61(4): 2294-2305. https://doi.org/10.1002/csc2.20458
Mottaleb K. A., Kruseman G., Frija A., Sonder K. and Lopez-Ridaura S. 2023. Projecting wheat demand in China and India for 2030 and 2050: Implications for food security. Front Nutr., 9: 1077443. doi: 10.3389/fnut.2022.1077443
Mutanda M., Shimelis H., Chaplot V., Shamuyarira K. W. and Figlan S. 2025. Agronomic performance and water use efficiency of newly developed wheat populations under drought-stressed and non-stressed conditions. Discov Appl Sci., 7(3): 176. https://doi.org/10.1007/s42452-025-06605-1
Mwadzingeni L., Shimelis H., Dube E., Laing M. D. and Tsilo T. J. 2016. Breeding wheat for drought tolerance: Progress and technologies. J Integr Agric., 15(5): 935-943. https://doi.org/10.1016/S2095-3119(15)61102-9
Negisho K., Shibru S., Matros A., Pillen K., Ordon F. and Wehner G. 2022. Association mapping of drought tolerance indices in Ethiopian durum wheat (Triticum turgidum ssp. durum). Front Plant Sci., 13: 838088. https://doi.org/10.3389/fpls.2022.838088
Nezhadahmadi A., Prodhan Z. H. and Faruq G. 2013. Drought tolerance in wheat. Sci World J., 2013(1): 610721. https://doi.org/10.1155/2013/610721
Nyaupane S., Poudel M. R., Panthi B., Dhakal A., Paudel H. and Bhandari R. 2024. Drought stress effect, tolerance, and management in wheat–a review. Cogent Food Agric., 10(1): 2296094. https://doi.org/10.1080/23311932.2023.2296094
Pandey A., Masthigowda M. H., Kumar R., Mishra S., Khobra R., Pandey G. C., et al. 2023. Explicating drought tolerance of wheat (Triticum aestivum L.) through stress tolerance matrix. Plant Physiol Rep., 28(1): 63-77. https://doi.org/10.1007/s40502-022-00707-3
Pequeno D. N., Hernandez-Ochoa I. M., Reynolds M., Sonder K., MoleroMilan A., Robertson R. D. et al. 2021. Climate impact and adaptation to heat and drought stress of regional and global wheat production. Environ Res Lett., 16(5): 054070. https://doi: 10.1088/1748-9326/abd970.
Priya M., Farooq M. and Siddique K. H. 2025. Enhancing Tolerance to Combined Heat and Drought Stress in Cool‐Season Grain Legumes: Mechanisms, Genetic Insights and Future Directions. Plant Cell Environ., https://doi.org/10.1111/pce.15382
Qian D., Wang M., Niu Y., Yang Y. and Xiang Y. 2025. Sexual reproduction in plants under high temperature and drought stress. Cell Rep., 44(3). https://doi.org/10.1016/j.celrep.2025.115390
Qiu W., Ma X., Cao H., Huang T., She X., Huang M. et al. 2022. Improving wheat yield by optimizing seeding and fertilizer rates based on precipitation in the summer fallow season in drylands of the Loess Plateau. Agric Water Manag., 264: 107489. https://doi.org/10.1016/j.agwat.2022.107489
Sairam R. K. and Saxena D. C. 2000. Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci., 184(1): 55-61. https://doi.org/10.1046/j.1439-037x.2000.00358.x
Sangha J. S., Wang W., Knox R., Ruan Y., Cuthbert R. D., Isidro-Sanchez J., et al. 2025. Phenotypic plasticity of bread wheat contributes to yield reliability under heat and drought stress. Plos One, 20(3): e0312122. https://doi.org/10.1371/journal.pone.0312122
Sarwar M., Saleem M. F., Ullah N., Khan M. J., Maqsood H., Ahmad H., et al. 2023. Silver nanoparticles protect tillering in drought-stressed wheat by improving leaf water relations and physiological functioning. Funct Plant Biol., 50(11): 901-914. https://doi.org/10.1071/FP23036
Singh S., Gupta A. K. and Kaur N. 2012. Differential responses of anti-oxidative defence system to long‐term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. J Agron Crop Sci., 198(3): 185-195. https://doi.org/10.1111/j.1439-037X.2011.00497.x
Subrahmanyam D., Subash N., Haris A. and Sikka A. K. 2006. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica, 44: 125-129. https://doi.org/10.1007/s11099-005-0167-y
Tomar S. M. S. and Kumar G. T. 2004. Seedling survivability as a selection criterion for drought tolerance in wheat. Plant Breeding, 123(4): 392-394. https://doi.org/10.1111/j.1439-0523.2004.00993.x
Vikas V. K., Tomar S. M. S., Sivasamy M., Kumar J., Jayaprakash P., Kumar A., et al. 2013. Hybrid necrosis in wheat: evolutionary significance or potential barrier for gene flow?. Euphytica, 194: 261-275. https://doi.org/10.1007/s10681-013-0952-9
Zhao W., Liu L., Shen Q., Yang J., Han X., Tian F. and Wu J. 2020. Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12(8): 2127. https://doi.org/10.3390/w12082127