Genome-wide identification, evolution and expression analysis of the HSP20 gene family in lentil [Lens culinaris (L.) Medikus]
Main Article Content
Abstract
Lentil [Lens culinaris (L.) Medikus, 2n = 2x = 14] is one of the most important legumes around the world. The crop is sensitive to various abiotic stresses, including heat and drought. Among various classes of proteins, heat shock proteins (HSPs), play a vital role in regulating developmental processes and the responses to environmental stresses. Of these, the HSP20 family has gained attention however, its genomic organization and functions are uncharacterized in Lens species. Our study thus identified a total of 47 putative LcHSP20 genes, which were classified into five subfamilies based on predicted subcellular localization and phylogenetic relationships. Sequence analysis revealed that the majority of LcHSP20 genes possess either no introns or only a single short intron, indicating a streamlined gene structure. Phylogenetic clustering further demonstrated that members of the same subfamily exhibit conserved gene structures and motifs, suggesting potential functional similarities. Moreover, expressions analysis revealed that the transcript levels of LcHSP20 genes were significantly induced under salt stress condition. Notably, two genes, LcHSP20-44 and LcHSP20-13, were markedly upregulated in response to these stressors, highlighting their potential roles in enhancing salt stress tolerance in lentil plants. This is the first genome-wide study of the HSP20 gene family in lentils, providing critical insights into their evolutionary and functional roles, laying the groundwork for future research on stress tolerance and improving lentil breeding programs.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Salaria, S., Boatwright, J. L., Thavarajah, P., Kumar, S., & Thavarajah, D. (2022). Protein biofortification in lentils (Lens culinaris medik.) toward human health. Frontiers in Plant Science, 13, 869713.
FAOSTAT. 2022. World Food and Agriculture-Statistical Year Book https://www.fao.org/faostat/en/#data/QCL
Singh, D., Singh, C. K., Taunk, J., Jadon, V., Pal, M., & Gaikwad, K. (2019). Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Scientific reports, 9(1), 12976.
Rubio Teso, M.L., Lara-Romero, C., Rubiales. D., Parra-Quijano M., & Iriondo, J. M. (2022) Searching for abiotic tolerant and biotic stress resistant wild lentils for introgression breeding through predictive characterization. Front Plant Sci. 13:817849. doi: 10.3389/fpls.2022.817849.
Barilli, E., & Rubiales, D. (2023). Identification and characterization of resistance to rust in lentil and its wild relatives. Plants. 12(3):626. https://doi.org/10.3390/plants12030626.
Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., Siddique, K. H., & Nayyar, H. (2017). Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Frontiers in plant science, 8, 1776.
Noor, M.,M.,A., Tahjib-Ul-Arif, M., Alim, S.,M.,A., Islam, M.M., Hasan, M.T., Babar, M.A., Hossain, M.,A., Jewel, Z.,A., Murata, Y., & Mostofa, M.G. (2024) Lentil adaptation to drought stress: response, tolerance, and breeding approaches. Front Plant Sci. 15:1403922. doi: 10.3389/fpls.2024.1403922.
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), 50.
Zhang, Q., Dai, B., Fan, M., Yang, L., Li, C., Hou, G., ... & Li, J. (2024). Genome-wide profile analysis of the HSP20 family in lettuce and identification of its response to drought stress. Frontiers in Plant Science, 15, 1426719.
Charng YeeYung, C. Y., Liu HsiangChin, L. H., Liu NaiYu, L. N., Hsu FuChiun, H. F., & Ko SweeSuak, K. S. (2006). Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation.
Ji XR, Yu YH, Ni PY, Zhang GH, Guo DL. Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development. BMC Plant Biol. 2019;19(1):433.
Eyles, S. J., & Gierasch, L. M. (2010). Nature’s molecular sponges: small heat shock proteins grow into their chaperone roles. Proceedings of the National Academy of Sciences, 107(7), 2727-2728.
Sun, W., Van Montagu, M., & Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1577(1), 1-9.
Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones. 2001;6(3):225–37.
Giese, K. C., & Vierling, E. (2004). Mutants in a small heat shock protein that affect the oligomeric state: Analysis and allele-specific suppression. Journal of Biological Chemistry, 279(31), 32674-32683.
Jaya, N., Garcia, V., & Vierling, E. (2009). Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proceedings of the National Academy of Sciences, 106(37), 15604-15609.
Bondino, H. G., Valle, E. M., & Ten Have, A. (2012). Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants. Planta, 235(6), 1299-1313.
Guo, L. M., Li, J., He, J., Liu, H., & Zhang, H. M. (2020). A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Scientific reports, 10(1), 1383.
Gupta, S. C., Sharma, A., Mishra, M., Mishra, R. K., & Chowdhuri, D. K. (2010). Heat shock proteins in toxicology: how close and how far?. Life sciences, 86(11-12), 377-384.
HUANG, S., HUANG, D., FU, L., QIN, Y., TANG, J., Sihui, L., ... & ZHOU, J. (2023). Characterization of Arabidopsis thaliana HSP20 gene family and its expression analysis under drought and salt stress. Life Science Research, 27(2), 162-169.
Ouyang Y, Chen J, Xie W, Wang L, Zhang Q. Comprehensive sequence and expression profile analysis of Hsp20 gene family in rice. Plant Mol Biol. 2009;70(3):341–57.
Muthusamy, S. K., Dalal, M., Chinnusamy, V., & Bansal, K. C. (2017). Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. Journal of plant physiology, 211, 100-113.
Zhao, P., Wang, D., Wang, R., Kong, N., Zhang, C., Yang, C., ... & Chen, Q. (2018). Genome-wide analysis of the potato HSP20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC genomics, 19, 1-13.
Liu, S., Wu, Y., Li, Y., Zhang, Z., He, D., Yan, J., ... & Liu, Y. (2024). Genome-Wide Identification and Expression Analysis of Heat Shock Protein 20 (HSP20) Gene Family in Response to High-Temperature Stress in Chickpeas (Cicer arietinum L.). Agronomy, 14(8), 1696.
Lopes-Caitar VS, de Carvalho MC, Darben LM, Kuwahara MK, Nepomuceno AL, Dias WP, et al. Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics. 2013;14:577.
Ramsay, L., Koh, C. S., Kagale, S., Gao, D., Kaur, S., Haile, T., ... & Bett, K. E. (2021). Genomic rearrangements have consequences for introgression breeding as revealed by genome assemblies of wild and cultivated lentil species. bioRxiv 2021.07. 23.453237. Crop Sci, 50, 1831-1839.
Finn, R., Griffiths‐Jones, S., & Bateman, A. (2003). Identifying protein domains with the Pfam database. Current Protocols in Bioinformatics, 1(1), 2-5.
Finn, R.D., Clements, J., & Eddy, S.R. (2011). HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 39(2), 29-37.
Letunic, I., Doerks, T., & Bork, P. (2015). SMART: recent updates, new developments and status in 2015. Nucleic acids research, 43(D1), D257-D260.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), 1792-1797.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739.
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425.
Letunic, I., & Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic acids research, 47(W1), W256-W259.
Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297.
Bailey, T.L., Johnson, J., Grant, C.E., & Noble, W.S. (2015). The MEME suite. Nucleic Acids Research, 43(W1), W39-W49.
Chen, C., Chen, H., He, Y., & Xia, R. (2018). TBtools: a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, 289660.
Chao, J., Li, Z., Sun, Y., Aluko, O. O., Wu, X., Wang, Q., & Liu, G. (2021). MG2C: A user-friendly online tool for drawing genetic maps. Molecular horticulture, 1(1), 16.
Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., ... & Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research, 30(1), 325-327.
Sharanbasappa D Madival., Dwijesh Chandra Mishra., Krishna Kumar Chaturvedi., Anu Sharma., Neeraj Budhlakoti., Ulavappa Angadi., Pavana B., Mohammed Samir Farooqi., Sudhir Srivastava, and Girish Kumar Jha (2024). NaturePred: A Tool for Revolutionizing Natural Product Classification with Artificial Intelligence. Current Proteomics
Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic acids research, 35(suppl_2), W585-W587.
Buchfink, B., Reuter, K., & Drost, H. G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature methods, 18(4), 366-368.
Lawrence, M., Gentleman, R., & Carey, V. (2009). rtracklayer: an R package for interfacing with genome browsers. Bioinformatics, 25(14), 1841.
Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., ... & Carey, V. J. (2013). Software for computing and annotating genomic ranges. PLoS computational biology, 9(8), e1003118.
Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). " Circlize" implements and enhances circular visualization in R.
Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120.
Langdon, W. B. (2015). Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData mining, 8(1), 1.
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature biotechnology, 33(3), 290-295.
Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity. New Phytol. 2020;227(1):24–37.
Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol. 2003;42(1):579–620.
Waters ER. The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot. 2013;64(2):391–403.
Hua, Y., Liu, Q., Zhai, Y., Zhao, L., Zhu, J., Zhang, X., ... & Wang, D. (2023). Genome-wide analysis of the HSP20 gene family and its response to heat and drought stress in Coix (Coix lacryma-jobi L.). BMC genomics, 24(1), 478.
Yu J, Cheng Y, Feng K, Ruan M, Ye Q, Wang R, et al. Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. Front Plant Sci. 2016;7:1215.
Qi H, Chen X, Luo S, Fan H, Guo J, Zhang X, et al. Genome-wide identification and characterization of heat shock protein 20 genes in maize. Life (Basel). 2022;12(9):1397
Ji, X. R., Yu, Y. H., Ni, P. Y., Zhang, G. H., & Guo, D. L. (2019). Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development. BMC plant biology, 19(1), 433.
Ma W, Zhao T, Li J, Liu B, Fang L, Hu Y, et al. Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum. Sci Rep. 2016;6:32517.
Arabidopsis Genome Initiative genomeanalysis@ tgr. org genomeanalysis@ gsf. de. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. nature, 408(6814), 796-815.
International Rice Genome Sequencing P. The map-based sequence of the rice genome. Nature. 2005;436(7052):793–800.
Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M. C., Wang, B., ... & Ware, D. (2017). Improved maize reference genome with single-molecule technologies. Nature, 546(7659), 524-527.
Hou Z, Li A, Huang C. Genome-wide identification, characterization and expression of HSP20 gene family in dove. Front Genet. 2022;13:1011676.
Yan, H., Zhang, A., Chen, J., He, X., Xu, B., Xie, G., ... & Huang, L. (2017). Genome-wide analysis of the PvHsp20 family in switchgrass: motif, genomic organization, and identification of stress or developmental-related Hsp20s. Frontiers in plant science, 8, 1024.
Jeffares DC, Penkett CJ, Bahler J. Rapidly regulated genes are intron poor. Trends Genet. 2008;24(8):375–8.
Gonzalez-Gordo S, Palma JM, Corpas FJ. Small heat shock protein (sHSP) gene family from sweet pepper (Capsicum annuum L.) fruits: involvement in ripening and modulation by nitric oxide (NO). Plants (Basel). 2023;12(2):389.