Millets and pseudocereals: A treasure for climate resilient agriculture ensuring food and nutrition security

Main Article Content

T. E. Nagaraja
S. Gazala Parveen
C. Aruna
K. Hariprasanna
S. P. Singh
Anurudh K. Singh
D. C. Joshi
Priyanka Joshi
S. M. S. Tomar
Akshay Talukdar
Sanjay Kumar

Abstract

Once, a staple food for civilizations and a popular feed for centuries, millets are a treasure trove of micronutrients and essential amino acids. Despite being side-lined during the Green Revolution, these small-seeded powerhouses are perfectly adapted to harsh dryland conditions such as low rainfall, drought, and high temperatures. The millets require minimal maintenance and thrive under stress, showcasing their rich genetic diversity and adaptability. However, boosting genetic gain and developing high-yielding varieties remains a challenge due to restricted research, limited genomic tools, poor market demand and accessibility to germplasm. As our climate and cropping systems are changing, millets offer a promising solution for diversification and adaptation. Beyond their impressive nutrition, they possess therapeutic benefits, making them valuable for medicinal purposes. However, the cultivation of millets, especially the minor millets, has declined due to their underutilization in daily diets. Genetic improvement and application of modern technologies are needed to increase production and integrate these millets as alternative food sources in Indian cuisine. Fortunately, growing awareness of their nutritional value, health benefits, and industrial uses is fuelling a revival. Recognizing their potential, national and international organizations are working to restore millet cultivation. The United Nations even declared 2023 as the “International Year of Millets" at Indian initiative. This review highlights the progress made in the genetic improvement of both major (sorghum, pearl millet, finger millet) and minor millets (foxtail, proso, kodo, barnyard, little and browntop millets). Additionally, pseudo-cereals like buckwheat and amaranth are included. The areas of future research have also been indicated for urgent attention and immediate action to make millets and pseudo-cereals a household food ensuring food and nutrition security and climate resilient agriculture in India.

Article Details

How to Cite
Nagaraja, T. E. ., Parveen, S. G. ., Aruna, C. ., Hariprasanna, K. ., Singh, S. P. ., Singh, A. K. ., Joshi, D. C. ., Joshi, P. ., Tomar, S. M. S. ., Talukdar, A. ., & Kumar, S. . (2024). Millets and pseudocereals: A treasure for climate resilient agriculture ensuring food and nutrition security. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 84(01), 1–37. https://doi.org/10.31742/ISGPB.84.1.1
Section
Review Articles

References

Arora S., Cheema J., Poland J., Uauy C. and Chhuneja P. 2019. Genome-wide association mapping of grain micronutrients concentration in Aegilops tauschii. Frontiers in Plant Science 10: 1–14.

Arraiano L. S., Brading P. A. and Brown J. K. M. 2001. A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathology, 50(3), 339-346.

Ayalew H., Ma X. and Yan G. 2015. Screening wheat (Triticum spp.) genotypes for root length under contrasting water regimes: potential sources of variability for drought resistance breeding. J. Agron. Crop Sci., 201(3): 189-194.

Bektas H., Hohn C.E. and Waines J.G. 2017. Characteristics of the root system in the diploid genome donors of hexaploid wheat (Triticum aestivum L.). Genet Resour Crop Evol., 64: 1641–1650.

Bishopp A. and Lynch J.P. 2015. The hidden half of crop yields. Nat Plants 1:15117.

Botwright T.L., Rebetzke G.J., Condon A.G., and Richards R.A. 2001. Influence of variety, seed position and seed source on screening for coleoptile length in bread wheat (Triticum aestivum L.). Euphytica, 119: 349–356. doi: 10.1023/A:1017527911084

Calderini D.F. and Reynolds M.P. 2000. Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid wheats. Aust J Plant Physiol, 27:183–191.

Cox T. S. (1997). Deepening the wheat gene pool. Journal of Crop Production, 1(1), 1-25

Das M.K., Bai G.H., Mujeeb-Kazi A. and Rajaram S. 2016. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet Resour Crop Evol., 63(8):1285–96.

Del Blanco I.A., Rajaram S. and Kronstad W.E. 2001. Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Science 41: 670–676.

Dreccer M. F., Borgognone M. G., Ogbonnaya F. C., Trethowan R. M. and Winter B. 2007. CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crops Research, 100(2-3), 218-228

Dreisigacker S., Kishii M., Lage J. and Warburton M.. 2008. Use of synthetic hexaploids wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res., 59:413–20.

Ehdaie B., Layne A. P. and Waines J. G. 2012. Root system plasticity to drought influences grain yield in bread wheat. Euphytica, 186(1), 219-232.

Emebiri L. C. and Ogbonnaya, F. C. 2015. Exploring the synthetic hexaploid wheat for novel sources of tolerance to excess boron. Molecular breeding, 35(2), 68.

Emebiri L. C., Raman H. and Ogbonnaya F. C. 2020. Synthetic hexaploid wheat as a source of novel genetic loci for aluminium tolerance. Euphytica, 216(8), 1-14.

Gaikwad K. B., Babu P., Kumar M., Kumar N. and Yadav R. 2022. Breeding Wheat for Conservation Agriculture (CA) in the Era of Climate Change. In New Horizons in Wheat and Barley Research (pp. 359-380). Springer, Singapore

Gegas V. C., Nazari A., Griffiths S., Simmonds J., Fish L., Orford S., et al. 2010. A genetic framework for grain size and shape variation in wheat. Plant Cell. 22:1046–1056. doi: 10.1105/tpc.110.074153

Ghaffary S. M. T., Faris J. D., Friesen T. L., Visser R. G., van der Lee T. A., Robert O., and Kema, G. H. 2012. New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. Theoretical and Applied Genetics, 124(1), 125-142.

Jafarzadeh J., Bonnett D., Jannink J. L., Akdemir D., Dreisigacker S. and Sorrells M. E. 2016. Breeding value of primary synthetic wheat genotypes for grain yield. PloS one, 11(9), e0162860.

Kaur A., Chhuneja P., Srivastava P., Singh K., and Kaur, S. 2021. Evaluation of Triticum durum–Aegilops tauschii derived primary synthetics as potential sources of heat stress tolerance for wheat improvement. Plant Genetic Resources, 19(1), 74-89.

Kazi A. G., Rasheed A., Mahmood T. and Mujeeb-Kazi A. 2012. Molecular and morphological diversity with biotic stress resistances of high 1000-grain weight synthetic hexaploid wheats. Pak. J. Bot, 44(3), 1021-1028.

Kumar A., Kumar P., Singh G., Kumar R. and Kumar S. 2017. Genetic parameters and characters association analysis for yield components and heat tolerance in bread wheat (Triticum aestivum L.). Environment & Ecology 35: 1087–1092.

Li A., Liu D., Yang W., Kishii, M. and Mao L. 2018. Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering, 4(4), 552-558.

Lin C. H., Tsai K. C., Prior P., & Wang J. F. 2014. Phylogenetic relationships and population structure of R alstonia solanacearum isolated from diverse origins in T aiwan. Plant pathology, 63(6), 1395-1403.

Liu X. M., Gill B. S. and Chen, M. S. 2005. Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theoretical and Applied Genetics, 111(2), 243-249.

Lopes M. S. and Reynolds M. P. 2010. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology, 37(2), 147-156.

Lopes M. S. and Reynolds M. P. 2011. Drought adaptive traits and wide adaptation in elite lines derived from resynthesized hexaploid wheat. Crop Science, 51(4), 1617-1626.

Lozano-Ramírez N., Dreisigacker S., Sansaloni C. P., He X., Islas S. S., Pérez-Rodríguez P. and Singh P. K. (2022). Genome-Wide Association Study for Resistance to Tan Spot in Synthetic Hexaploid Wheat. Plants, 11(3), 433.

Lutz J., Hsam S. L. K., Limpert, E. and Zeller, F. J. 1995. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L.(common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity, 74(2), 152-156.

Lynch J.P. and Wojciechowski T. 2015. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot., 66:2199–2210.

Morgounov A., Abugalieva A., Akan K., Akın B., Baenziger S., Bhatta M., and Zelenskiy, Y. 2018. High-yielding winter synthetic hexaploid wheats resistant to multiple diseases and pests. Plant Genetic Resources, 16(3), 273-278.

Moyers B.T., Morrell P.L. and McKay J.K. 2018. Genetic costs of domestication and improvement. Journal of Heredity, 109(2), 103-116.

Mujeeb-Kazi A., Gul A., Farooq M., Rizwan S. and Ahmad I. 2008. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust J Agric Res., 59(5):391–8.

Nakayama R., Safi M. T., Ahmadzai W., Sato K., and Kawaura K. 2022. Comparative transcriptome analysis of synthetic and common wheat in response to salt stress. Scientific reports, 12(1), 1-13.

Nkongolo K. K., Quick J. S., Limin A. E. and Fowler, D. B. 1991. Sources and inheritance of resistance to Russian wheat aphid in Triticum species amphiploids and Triticum tauschii. Canadian Journal of Plant Science, 71(3), 703-708.

Ober E. S., Alahmad S., Cockram J., Forestan C., Hickey L. T., Kant J. and Watt M. 2021. Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 134(6), 1645-1662.

Ogbonnaya F. C., Steadman E., Burch D., Moody D. and Munns R. 2009. Breeding for salinity tolerance using synthetic wheats. In Genomics Symp. The Genomics of Salinity. The Grand Chancellor Hotel, South Australia (pp. 16-18).

Ogbonnaya F.C., Abdalla O., Mujeeb-Kazi A., Kazi A.G., Xu S.S., Gosman N., et al. 2013. Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed Rev., 37:35–122.

Ogbonnaya F.C., Huang S., Steadman E., Emebiri L., Imtiaz M., Dreccer M.F., Lagudah E.S., Munns, R. and van Ginkel M. 2008b. Mapping quantitative trait loci associated with salinity tolerance in synthetic derived backcrossed bread lines. 11th International Wheat Genetics Symposium, Brisbane.

Palta J.A., Chen X., Milroy S.P., Rebetzke G.J., Dreccer M.F., and Watt M.. 2011. Large root systems: are they useful in adapting wheat in dry environments? Funct. Plant Biol. 38:347–354.

Periyannan S., Bansal U., Bariana H., Deal K., Luo M.C., Dvorak J., et al. 2014. Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor Appl Genet., 127(4):947–55.

Periyannan S., Moore J., Ayliffe M., Bansal U., Wang X., Huang L, et al. 2013. The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science, 341(6147):786–8.

Petrarulo M., Marone D., Ferragonio P., Cattivelli L., Rubiales D., De Vita P. and Mastrangelo A. M. 2015. Genetic analysis of root morphological traits in wheat. Mol. Genet. Genomics, 290(3): 785-806.

Ranjan R., Yadav R., Gaikwad K., Kumar M., Kumar N., Babu, P. and Joshi A. K. 2021. Genetic variability for root traits and its role in adaptation under conservation agriculture in spring wheat. Indian Journal of Genetics and Plant Breeding 81(01), 24-33.

Rattey A. R., Shorter R. and Chapman S. C. 2011. Evaluation of CIMMYT conventional and synthetic spring wheat germplasm in rainfed sub-tropical environments. II. Grain yield components and physiological traits. Field Crops Research, 124(2), 195-204.

Singh M.K., Sharma P.K., Tyagi B.S. and Singh G. 2013. Genetic analysis for morphological traits and protein content in bread wheat (Triticum aestivum L.) under normal and heat stress environments. Indian Journal of Genetics and Plant Breeding 73: 320–324.

Singh R.P., Nelson J.C. and Sorrells M.E. 2000. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci., 40:1148–1155

Thomas J. B. and Conner R. L. 1986. Resistance to Colonization by the Wheat Curl Mite in Aegilops squarrosa and its Inheritance after Transfer to Common Wheat 1. Crop science, 26(3), 527-530.

Thomas J., Nilmalgoda S., Hiebert C., McCallum B., Humphreys G., and DePauw R. 2010. Genetic markers and leaf rust resistance of the wheat gene Lr32. Crop science, 50(6), 2310-2317.

Trethowan R. M. and Mujeeb‐Kazi, A. 2008. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop science, 48(4), 1255-1265.

Ullah S., Trethowan R. and Bramley H. 2021. The Physiological Basis of Improved Heat Tolerance in Selected Emmer-Derived Hexaploid Wheat Genotypes. Front. Plant Sci., 12:739246.

Verma P.N., Singh B.N., Singh G., Singh M.K. and Setter T.L. 2014. Genetic diversity analysis for yield and other agronomic traits in bread wheat under water logged sodic soil condition. Journal of Wheat Research 6: 51–58.

Villareal R. L., Sayre K., Banuelos O. and Mujeeb-Kazi A. 2001. Registration of four synthetic hexaploid wheat (Triticum turgidum/Aegilops tauschii) germplasm lines tolerant to waterlogging. Crop science, 41(1), 274-274.

Wang T., Xu S. S., Harris M. O., Hu J., Liu L. and Cai X. 2006. Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theoretical and Applied Genetics, 113(4), 611-618.

Wang Y., Wang S., Jia X., Tian Z., Wang Y., Wang C. and Ji W. 2021. Chromosome karyotype and stability of new synthetic hexaploid wheat. Molecular Breeding, 41(10), 1-12.

Yadav R., Gaikwad K. B. and Bhattacharyya R. 2017. Breeding wheat for yield maximization under conservation agriculture. Indian J. Genet. Plant Breed, 77, 185-198.

Yadav R., Gaikwad K., Bhattacharyy, R., Bainsla N. K., Kumar M. and Yadav S. S. 2018. Breeding new generation genotypes for conservation agriculture in maize-wheat cropping systems under climate change. Food Security and Climate Change, 189-228.

Yan L., Liang F., Xu H., Zhang X., Zhai H., Sun Q. and Ni Z. 2017. Identification of QTL for Grain Size and Shape on the D Genome of Natural and Synthetic Allohexaploid Wheats with Near-Identical AABB Genomes. Front. Plant Sci. 8:17.

Most read articles by the same author(s)

<< < 2 3 4 5 6 7 8 9 10 > >>