AMP-PCR-based assay for detection and quantification of genome wide natural methylation in rice
Main Article Content
Abstract
Natural and artificial selection efforts combined several favorable alleles of economically important traits in crop plants. However, the progress made is insufficient to meet the future food requirements. Hence, exploring new genetic resources and breeding strategies is important for sustainable improvement in production. The epigenetic variation that alters the phenotype expression without altering the gene sequence has played a crucial role in the process of evolution of modern-day crop plants. The methylation-based epigenetic variations are known to inherit more consistently than other types of epigenetic variation. However, detection and quantification of methylation in the plant genome is costly, hence limiting its utility in crop improvement. In the present investigation, we demonstrated the low-cost but effective approach for detecting and quantification of natural DNA methylation variation in the rice genome by employing custom-designed markers called amplified methylation polymorphism polymerase chain reaction markers (AMP-PCR markers). The methylation detected was scored in an effective method which was further used for quantification. The natural methylation in the diverse population of rice was used to showcase the methylation diversity.
Furthermore, the methylation in germplasm accessions, breeding lines, and released varieties indicated the significant influence of artificial selection efforts on methylation in the rice genome. The genotypes cultivated in different ecologies exhibited different types of methylations. The results ensure the utility of the AMP-PCR assay approach in the detection and utilization of methylation variation at lower costs in crop improvement programs for complex economic traits.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ajaykumar H., Ramesh S., Sunitha N.C. and Anilkumar C. 2021. Assessment of natural DNA methylation variation and its association with economically important traits in dolichos bean (Lablab purpureus L. Var. Lignosus) using AMP-PCR assay. J. Appl. Genet., 62: 571-583. https://doi.org/10.1007/s13353-021-00648-x
Anilkumar C., Muhammed Azharudheen T.P., Sah R.P., Sunitha N.C., Devanna B.N., Marndi B.C. and Patra B.C. 2023. Gene based markers improve precision of genome-wide association studies and accuracy of genomic predictions in rice breeding. Heredity, 130: 335-345. https://doi.org/10.1038/s41437-023-00599-5
Anilkumar C., Sah R.P., Muhammed Azharudheen T.P., Behera S., Singh N., Prakash N.R., Sunitha N.C., Devanna B.N., Marndi B.C., Patra B.C. and Nair S.K. 2022a. Understanding complex genetic architecture of rice grain weight through QTL-meta analysis and candidate gene identification. Sci. Rep., 12: 1-13. https://doi.org/10.1038/s41598-022-17402-w
Anilkumar C., Sunitha N.C., Harikrishna, Devate N.B. and Ramesh S. 2022b. Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review. Planta, 256: 87. https://doi.org/10.1007/s00425-022-03996-y
Chattopadhyay K., Bagchi T.B., Sanghamitra P., Sarkar S., Anilkumar C., Marndi B.C., Kumar A., Moharana N., Mohapatra S.S. and Sahoo S.K. 2023. Mapping genetic determinants for grain physicochemical and nutritional traits in brown and pigmented rice using genome-wide association analysis. Euphytica, 219: 57. https://doi.org/10.1007/s10681-023-03184-3
Chepurnov V.A., Chaerle P., Roef L., Van Meirhaeghe A. and Vanhoutte K. 2011. Classical breeding in diatoms: scientific background and practical perspectives. In: Seckbach J, Kociolek J P. (Eds.), The diatom world, Springer, Dordrecht, pp. 167-194. https://doi.org/10.1007/978-94-007-1327-7_7
Crisp P.A., Bhatnagar-Mathur P., Hundleby P., Godwin I.D., Waterhouse P.M. and Hickey L.T. 2022. Beyond the gene: epigenetic and cis-regulatory targets offer new breeding potential for the future. Curr. Opin. Biotechnol., 73: 88-94. https://doi.org/10.1016/j.copbio.2021.07.008
Cubas P., Vincent C. and Coen E. 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nat., 401: 157-161. https://doi.org/10.1038/43657
Dalakouras A. and Vlachostergios D. 2021. Epigenetic approaches to crop breeding: current status and perspectives. J. Extl. Bot., 72: 5356-5371. https://doi.org/10.1093/jxb/erab227
Doyle J.J. and Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull., 19: 11–15.
Dubin M.J., Zhang P., Meng D., Remigereau M.S., Osborne E.J., Paolo Casale F., Drewe P., Kahles A., Jean G., Vilhjálmsson B. and Jagoda J. 2015. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. elife, 4: e05255. https://doi.org/10.7554/eLife.05255
Fulneček J. and Kovařík A. 2014. How to interpret methylation sensitive amplified polymorphism (MSAP) profiles?. BMC Genet., 15: 1-9. https://doi.org/10.1186/1471-2156-15-2
Gagneur J., Stegle O., Zhu C., Jakob P., Tekkedil M.M., Aiyar R.S., Schuon A.K., Pe'er D. and Steinmetz L.M. 2013. Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype. PLoS Genet., 9: e1003803. https://doi.org/10.1371/journal.pgen.1003803
Ganguly D.R., Crisp P.A., Eichten S.R. and Pogson B.J. 2018. Maintenance of pre‐existing DNA methylation states through recurring excess‐light stress. Plant Cell Environ., 41: 1657-1672. https://doi.org/10.1111/pce.13324
Hu Y., Morota G., Rosa G.J. and Gianola D. 2015. Prediction of plant height in Arabidopsis thaliana using DNA methylation data. Genet., 201: 779-793. https://doi.org/10.1534/genetics.115.177204
Jing Z., Qu Y., Yu C., Pan D., Fan Z., Chen J. and Li C. 2010. QTL analysis of yield-related traits using an advanced backcross population derived from common wild rice (Oryza rufipogon L). Mol. Plant Breed., 1: 1-10. https://doi.org/10.5376/mpb.2010.01.0001
Kassambara A. and Mundt F. 2017. Factoextra: extract and visualize the results of multivariate data analyses. R Package Version 1, 337–354
Kastner T., Erb K.H. and Haberl H. 2014. Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environ. Res. Lett., 9: 034015. https://doi.org/10.1088/1748-9326/9/3/034015
Kurdyukov S. and Bullock M. 2016. DNA methylation analysis: choosing the right method. Biol., 5: 1-21. https://doi.org/10.3390/biology5010003
Letunic I. and Bork P. 2007. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics, 23: 127-128. https://doi.org/10.1093/bioinformatics/btl529
Li Q., Eichten S.R., Hermanson P.J. and Springer N.M. 2014. Inheritance patterns and stability of DNA methylation variation in maize near-isogenic lines. Genet., 196: 667-676. https://doi.org/10.1534/genetics.113.158980
Li X., Wang X., He K., Ma Y., Su N., He H., Stolc V., Tongprasit W., Jin W., Jiang J. and Terzaghi W. 2008. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. The Plant Cell, 20: 259-276. https://doi.org/10.1105/tpc.107.056879
Manning K., Tör M., Poole M., Hong Y., Thompson A.J., King G.J., Giovannoni J.J. and Seymour G.B. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet., 38: 948-952. https://doi.org/10.1038/ng1841
Meng F., Zhao H., Zhu B., Zhang T., Yang M., Li Y., Han Y. and Jiang J. 2021. Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in Arabidopsis thaliana. The Plant Cell, 33: 1997-2014. http://dx.doi.org/10.1093/plcell/koab093.
Muhammed Azharudheen T.P., Nayak A.K., Behera S., Anilkumar C., Marndi B.C., Moharana D., Singh L.K., Upadhyay S. and Sah R.P. 2022. Genome-wide association analysis for plant type characters and yield using cgSSR markers in rice (Oryza sativa L.). Euphytica, 218: 69. https://doi.org/10.1007/s10681-022-03021-z
Nayak A.K., Anilkumar C., Behera S., Sah R.P., Lavanya G.R., Kumar A., Behera L. and Muhammed Azharudheen T.P. 2022. Genetic dissection of grain size traits through genome-wide association study based on genic markers in rice. Rice Sci., 29: 462-472. https://doi.org/10.1016/j.rsci.2022.07.006
Ong-Abdullah M., Ordway J.M., Jiang N., Ooi S.E., Kok S.Y., Sarpan N., Azimi N., Hashim A.T., Ishak Z., Rosli S.K. and Malike F.A. 2015. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nat., 525: 533-537. https://doi.org/10.1038/nature15365
Peakall R.O.D. and Smouse P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes, 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
Phutikanit N., Suwimonteerabutr J., Harrison D., D'Occhio M., Carroll B. and Techakumphu M. 2010. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) technique among various cell types of bulls. Acta Veterinaria Scandinavica, 52(1): 1-9. https://doi.org/10.1186/1751-0147-52-18
Qian Q., He P., Teng S., Zeng D. and Zhu L. 2001. QTLs analysis of tiller angle in rice (Oryza sativa L.). Yi chuan xue bao= Acta genetica Sinica, 28: 29-32.
Reznick D.N. and Ghalambor C.K. 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. In: Hendry A.P., Kinnison M.T. (Eds), Microevolution Rate, Pattern, Process. Contemporary Issues in Genetics and Evolution, Springer, Dordrecht. pp.183-198. https://doi.org/10.1007/978-94-010-0585-2_12
Richards E.J. 2006. Inherited epigenetic variation—revisiting soft inheritance. Nat. Rev. Genet., 7: 395-401. https://doi.org/10.1038/nrg1834
Sah R.P., Nayak A.K., Chandrappa A., Behera S., Azharudheen T.P.M. and Lavanya G.R. 2023. cgSSR marker‐based genome‐wide association study identified genomic regions for panicle characters and yield in rice (Oryza sativa L.). J. Sci. Food Agric., 103: 720-728. https://doi.org/10.1002/jsfa.12183
Salmon A., Clotault J., Jenczewski E., Chable V. and Manzanares-Dauleux M.J. 2008. Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci., 174: 61–70. https://doi.org/10.1016/j.plantsci.2007.09.012
Shen Y., Zhang J., Liu Y., Liu S., Liu Z., Duan Z., Wang Z., Zhu B., Guo Y.L. and Tian Z. 2018. DNA methylation footprints during soybean domestication and improvement. Genome Biol., 19: 1-14. https://doi.org/10.1186/s13059-018-1516-z
Xu G., Lyu J., Li Q., Liu H., Wang D., Zhang M., Springer N.M., Ross-Ibarra J. and Yang J. 2020. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Nat. Commun., 11: 5539. https://doi.org/10.1038/s41467-020-19333-4
Xu J., Chen G., Hermanson P.J., Xu Q., Sun C., Chen W., Kan Q., Li M., Crisp P.A., Yan J. and Li L. 2019. Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize. Genome Biol., 20: 243. https://doi.org/10.1186/s13059-019-1859-0
Yamagishi M., Takeuchi Y., Kono I. and Yano M. 2002. QTL analysis for panicle characteristics in temperate japonica rice. Euphytica, 128: 219-224. https://doi.org/10.1023/A:1020893731249