Accentuating genetic gain in chickpea: Research gaps and future artifice
Main Article Content
Abstract
Chickpea (Cicer arietinum L.) is an essential grain legume crop in several developing countries, especially in the Mediterranean, Middle East, and Indian subcontinent, but its production potential could not be realised across the chickpea growing regions primarily due to environmrntal stresses. Chickpea global average yield for 2021 was 1.1 tonnes/ha, while the yield potential of chickpea varieties varies over 2 to 5 tonnes/ha under optimal growing conditions. Self-pollinating behaviour of chickpea has narrowed its genetic base, and particularly rare alleles are gradually being lost through selection processes before and after domestication. To address this problem, new crop improvement strategies are being implemented to increase chickpea yields and their resistance to environmental challenges. Traditional breeding procedures are insufficient to meet crop production demand for the growing population. To move on the development of new chickpea varieties, modern breeding tools and molecular techniques are being investigated to bring in unique features to combat climate change and its impacts. Wild Cicer species are rich sources of novel and desired traits. The use of new breeding strategies in chickpea, such as participatory plant breeding, precision high-throughput phenotyping, speed breeding, pangenome approach, genome-wide association studies (GWAS), genomic selection (GS), genome editing, and other omics studies, is expected to boost chickpea productivity and reduce breeding cycles by selecting new desirable traits much more rapidly than traditional methods. In this review, we have provided an overview of different strategies for chickpea sustainable improvement and examine their potentials and limitations.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ramani A, Kushwaha R, Malaviya R, Kumar R, Yadav N. Molecular, functional and nutritional properties of chickpea (Cicer arietinum L.) protein isolates prepared by modified solubilization methods. J Food MeasCharact. 2021; 15(3):2352-68. doi: 10.1007/s11694-020-00778-6.
FAOSTAT; 2021. http://faostat.fao.org/site. Accessed 30 May, 2023.
Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, et al. Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and ascochyta blight in chickpea (Ci-cer arietinum L.). Euphytica. 2013; 193(1):121-33. doi: 10.1007/s10681-013-0959-2.
Gayacharan U, Rani U, Singh S, Basandrai AK, Rathee VK, Tripathi K, et al. Identification of novel resistant sources for ascochyta blight (Ascochyta rabiei) in chickpea. PLOS ONE. 2020; 15(10):e0240589 doi: 10.1371/journal.pone.0240589, Pubmed:33075085.
Toker C, Ceylan FO, Inci NE, Yildirim T, Cagirgan MI. Inheritance of leaf shape in the culti-vated chickpea (Cicer arietinum L.). Turkish Journal of Field Crops. 2012; 17(1):16-18.
Reed W, Cardona C, Sithanantham S, Lateff SS. The chickpea insect pest and their control. In: Saxena MC, Singh KB (eds) The chickpea. CAB International Wallingford. 1987; 283–318.
Sharma HC, Gowda CLL, Stevenson PC, Ridsdill-Smith TJ, Clement SL, Rao GVR, et al. Host plant resistance and insect pest management. In: Yadav SS, Redden R, Chen W, Sharma B (eds) Chickpea breeding and management. CAB International, Wallingford. 2007; 520–537.
Yadav YK, Chaudhary P, Yadav S, Rizvi AH, Kumar T, Srivastava R, Soren KR, Bharadwaj C, Srinivasan R, Singh NK, Jain PK. Genetic mapping of quantitative trait loci associated with drought tolerance in chickpea (Cicer arietinum L.). Scientific Reports, 2023c; 13:44990. doi: 10.1038/s41598-023-44990-y.
Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry. 2018; 6:26. doi: 10.3389/fchem.2018.00026.
Prasad PVV, Staggenborg SA, Ristic Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Response of crops to limited wa-ter: Understanding and modeling water stress effects on plant growth processes. Amer Society Agro Crop Sci Society of America. 2008; 1; 301-355. DOI: 10.2134/advagricsystmodel1.c13.
Fotiadis S, Koutroubas, SD, Damalas CA. Phosphorus and potassium uptake, translocation, and utilization efficiency in chickpea under Mediterranean conditions.Nutr Cycling Agroecosyst. 2020; 116:313–328. doi: 10.1007/s10705-020-10047-z.
Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. 2013; 8(6): e66428. doi: 10.1371/journal.pone.0066428.
Ambika A, Aski MS, Gayacharan GS, Hamwieh A, Talukdar A, Kumar Gupta S, et al. Unravel-ing Origin, History, Genetics, and Strategies for Accelerated Domestication and Diversification of Food Legumes. Front Genet. 2022; 13:932430. doi: 10.3389/fgene.2022.932430
Diamond, J. (1997). Location, location, location: the first farmers. The American association for the advancement of science 278 (number 5341, issue 14). 1243-1244.
Kislev ME, Bar-Yosef O. The legumes: the earliest domesticated plants in the near east? Cur-rAnthropol. 1988; 29(1):175-9. doi: 10.1086/203623.
Hillman GC.The plant remains from Tell Abu Hureya in Syria: a preliminary report. The exca-vation of Tell Abu Hureya in Syria: a preliminary report, A.M.T. Moore. In: Proceedings of the Prehistory Society. 1975; 41:70-3.
Van Zeist W, Bottema S. Vegetation history of the eastern Mediterranean and the near east dur-ing the last 20,000 years. In: Paleoclimates, palaenvironments and human communities in the eastern Mediterranean region in later prehistory. Oxford: British Archeological Report, Interna-tional Series. 1982. 133, pp. 277-32l.
Van der Maesen LJG, Pundir RPS. Availability and use of wild cicer germplasm 57. FAO / IBPGR Plant Gen. ResourNewsl. 1984; 19-24.
Ladizinsky G, Pickersgill B, Yamamoto K. Exploitation of wild relatives of the food legumes. Springer Netherlands. 1988; 967-78.
Ladizinsky G, Adler A. The origin of chickpea Cicer arietinum L. Euphytica. 1976a; 25(1):211-7. doi: 10.1007/BF00041547.
Redden RJ, Berger JD. History and origin of chickpea. Chickpea Breed Manag. 2007; 1:1-13.
Van der Maesen LJG. A monograph of the genus with special reference to chickpea (Cicer arietinum L.), its ecology and cultivation. Maded. Wageningen, the Netherlands: Landbou. 1972; 342.
Millan Teresa, Madrid Eva, Cubero, Jose, Amri, Moez, Castro, Patricia, Rubio, Josefa. In Hand book of plant breeding, Vol- 10. Chickpea. Springer. 2015. doi:10.1007/978-1-4939-2797-5.
Van der Maesen LJG. Origin, history and taxonomy of chickpea. In: The chickpea. Wallingford, Oxfordshire, UK: CABI. 1987; 11-34.
Warkentin T, Banniza S, Vandenberg A. CDC frontier Kabuli chickpea. Can J Plant Sci. 2005; 85(4):909-10. doi: 10.4141/P04-185.
Sastry DVSSR, Upadhyaya HD, Gowda CLL. Determination of physical properties of chickpea seeds and their relevance in germplasm collections. Indian J Plant Genet Resour. 2014; 27(1):1-9.
Casanas F, Simó J, Casals J, Prohens, J. Toward an evolved concept of landrace. Front Plant Sci. 2017; 8:145. doi: 10.3389/fpls.2017.00145
Chandora R, Gayacharan Shekhawat N, Malhotra N. Chickpea genetic resources: collection, conservation, characterization, and maintenance. In: Chickpea: crop wild relatives for enhancing genetic gains. Academic Press. 2020; pp.37-61.
Kumar A, Yadav RS, Kumar R. Estimation of genetic parameters and correlation between mor-phological traits in selected chickpea (Cicer arietinum L.) accessions. Plant Arch. 2013; 13(2):719-23.
Kumar, A, Yadav RS, Kumar R. Assessment of variability and relationship among some quanti-tative traits in elite accessions of chickpea (Cicer arietinum L.). ProgAgricInt J. 2014; 14(1):63-8.
Kumar R, Yadav R, Soi S, Srinivasan Yadav SS, Mishra JP, Mittal N, Yadav N, Kumar A, Yadav A, Yadav V, Hemant, Upadhyaya, Hari D. Morpho-molecular characterization of land-races / wild genotypes of Cicerfor biotic / abiotic stresses. Legume Research. 2017; 40(6):974-984, doi: 10.18805 / lr. v0iOF.9100.
Singh NP, Krishna R, Kumar R. An assay of effects of different traits on chickpea grain yield. Ann Agric Res New S. 2001; 22(4):564-9.
Yadav JK, Singh HL, Kumar R. Perusing selection parameters in chickpea (Cicer arietinum L.). New Agric. 2003a; 14:75-80.
Yadav JK, Singh HL, Kumar R. Determining selection Components in chickpea (Cicer arieti-num L.). Plant Arch. 2003b; 3(1):125-8.
Yadav JK, Kumar R, Singh HL. Genetic divergency in chickpea. Adv Plant Sci. 2003c; 16(2):511-4.
Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK. Accessing genetic diversity for crop improvement. Curr. Opin. Plant Biol. 2010; 13(2):167-73. doi: 10.1016/j.pbi.2010.01.004.
Upadhyaya HD, Ortiz R. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. TheorAppl Genet. 2001; 102(8):1292-8. doi: 10.1007/s00122-001-0556-y.
Archak S, TyagiRK, Harer PN, Mahase LB, Singh N, Dahiya OP, NizarMA, SinghM, Vrushali TilekarV , Vikas Kumar , Manoranjan Dutta , Narendra P. Singh, Bansala KC. Characterization of chickpea germplasm conserved in the Indian National Genebank and development of a core set using qualitative and quantitative trait data. 2016; 4 (5): 417-424.
Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, et al. Genetic dissection of drought and heat tolerance in chickpea through genomewideand candidate gene-based association mapping approaches. PLOS ONE. 2014; 9(5): e96758. doi: 10.1371/journal.pone.0096758.
Roorkiwal M, Bharadwaj C, Barmukh R, Dixit GP, Thudi M, Gaur PM, et al. Integrating ge-nomics for chickpea improvement: achievements and opportunities. TheorAppl Genet. 2020; 133(5):1703-20. doi: 10.1007/s00122-020-03584-2.
Hazel LN, Lush JL.The efficiency of three methods of selection, journal of heredity,1942; 33(11) 393–399. https://doi.org/10.1093/oxfordjournals.jhered.a105102Singh K, Ocampo B. Exploitation of wild Cicer species for yield improvement in chickpea. TheorAppl Genet.1997; 95(3):418-423.
Singh K, Ocampo B. Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet. 1997; 95(3): 418-423.
Infantino A, Porta-PugliaA, et al. Screening wild Cicer species for resistance to fusarium wilt. Plant Dis. 1996; 80(1): 42-44.
Bajaj D, Upadhyaya HD, Das S, Kumar V, Gowda CLL, Sharma S, et al. Identification of can-didate genes for dissecting complex branch number trait in chickpea. Plant Sci. 2016; 245:61-70. doi: 10.1016/j.plantsci.2016.01.004
Winter P, AM Benko-Iseppon, et al. A linkage map of the chickpea (Cicer arietinum L.) ge-nome based on recombinant inbred lines from a C. arietinum× C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theoretical and Applied Genetics.2000; 101(7):1155-1163.
Yadav, J.K., Kumar, R., and Singh, H.L. (2003c). Genetic divergency in chickpea. Adv. Plant Sci. 16(2):511-4.
Benzohra IK, Bendahmane BS, Benkada MY, Labdi M. Evaluation of wild Cicer species for re-sistance to three pathotype of Ascochytarabiei (pass.) Labr in Algeria. Afr J Microbiol Res. 2014; 8(20):2022-9.
Haware M, Rao JN, et al. Evaluation of wild Cicer species for resistance to four chickpea dis-eases. Int Chick News. 1992; 27: 16-18.
Singh KB, Ocampo B, Robertson LD. Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol. 1998; 45:9-17.
Kaiser WJ, Alcala-Jimenez AR, Hervas-Vargas A, Trapero-Casas JL, Jimenez-Diaz RM. Screening of wild Cicer species for resistance to races 0 and 5 of Fusarium oxysporumf. sp. ci-ceris. Plant disease. 1994; 78: 962-967.
Nene Y, HawareM.Screening chickpea for esistance to Wilt Plant Dis. 1980; 64(4): 379-380.
Singh K, Hawtin G, et al. Resistance in chickpeas to Ascochytarabiei. Plant Dis.1981; 65(7):586-587.
Singh M, Bisht IS, et al. Characterization and evaluation of wild annual species for agro-morphological traits and major biotic stresses under Northwestern Indian Conditions. Crop Sci.2014; 54(1):229-239.
Kaur L, Sirari A, et al. Combining Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopatholmediter. 2013; 157-165.
Pande S, Ramgopal D, et al. Evaluation of wild Cicer species for resistance to Ascochyta blight and Botrytis graymold in controlled environment at ICRISAT, Patancheru, India. Jounal of SAT Agricultural Research.2006; 2(1): 1-3.
Collard BC, Ades P, et al. Prospecting for sources of resistance to ascochyta blight in wild Ci-cer species. Australas Plant Pathol.2001; 30(3): 271-276.
Ramgopal D, Srivastava RK, Pande S, Rathore A, Jadhav DR, Sharma M, Mallikarjuna N. In-trogression of Botrytis grey mould resistance genes from Cicerreticulatum (bgmr1cr) and C. echinospermum (bgmr1ce) to chickpea (C. arietinum). Plant Genet Res. 2013; 11(3), 212-216.
Di Vito, Singh MK, et al. Sources of resistance to cyst nematode in cultivated and wild Cicer species. Genetic Resources and Crop Evolution 1996;43(2): 103-107.
Thompson JP, Reen RA, et al. Hybridisation of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchusthornei and P. neglectus). Aus-tralas Plant Pathol. 2011; 40(6):601.
Sharma HC, Bhagwat MP, Pampapathy G, Sharma JP, Ridsdill-Smith TJ. Perennial wild rela-tives of chickpea as potential sources of resistance to Helicoverpaarmigera. Genet Resour Crop Evol. 2006; 53(1):131-8. doi: 10.1007/s10722-004-1951-4.
Singh K, Weigand S. Identification of resistant sources in Cicer species to Liriomyzacicerina. Genet Resour Crop Evol.1994; 41(2):75-79.
Toker C, Canci H, et al. Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol. 2007; 54(8):1781-1786.
CanciH, Toker C. Evaluation of annual wild Cicer species for drought and heat resistance under field conditions. Genet Resour Crop Evol. 2009; 56(1): 1.
Singh K, Malhotra R, et al. Sources for tolerance to cold in Cicer species. Crop Sci. 1990; 30(5):1136-1138.
Singh KB, Malhotra RS, Saxena MC. Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci. 1995; 35(5):1491-7.
Toker C. Preliminary screening and selection for cold tolerance in annual wild Cicer species. Genet Resour Crop Evol. 2005; 52(1):1-5.
SinghS, Gumber RK, Joshi N, Singh K. Introgression from wild Cicerreticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed. 2005; 124(5):477-80. doi: 10.1111/j.1439-0523.2005. 01146.x.
Singh RP, Singh I, Singh S, Sandhu JS. Assessment of genetic diversity among interspecific de-rivatives in chickpea. J Food Legumes. 2012; 25:150-2.
Upadhyaya HD. Crop germplasm and wild relatives: A source of novel variation for crop im-provement. Korean J Crop sci. 2008; 53:12-7.
Singh U, Pundir R. Amino acid composition and protein content of chickpea and its wild rela-tives. IntChick News. 1991; 25:19-20.
Mallikarjuna N, Jadhav DR. Techniques to produce hybrids between Cicer arietinum L., Cicer-pinnatifidumJaub. Indian J Genet Plant Breed. 2008; 68:398-405.
Dorrestein BV, Baum M, Malhotra RS. Interspecific hybridization between cultivated chickpea (Cicer arietinum L.) and the wild annual species C. judaicum, C. pinnatifidum. In: Proceedings of the third European conference on grain legumes. Valladolid, Spain: AEP Paris. 1998; 362-3.
Badami PS, Mallikarjuna N, Moss JP. Interspecific hybridization between Cicer arietinum and C. pinnatifidum. Plant Breed. 1997; 116(4):393-5. doi: 10.1111/j.1439-0523. 1997.tb01019.x
Salaria S, Bindra S, Singh I, Rani U, Kumar AS, Gill BS, Singh S. Introgression of morphologi-cal, phenological and productivity traits along with disease resistance from Cicerpinnatifidum into cultivated chickpea: a success story. Euphytica. 2023;219(4):47.
Sandhu JS, Gupta SK, Kaur L. Wide hybridization in chickpea and pigeon pea. In: Pulses at a glance. Ludhiana: Punjab Agricultural University. 2007; 32-7.
Malhotra RS, Singh KB, Di Vito M, Greco N, Saxena MC. Registration of ILC 10765 and ILC 10766 chickpea germplasm lines resistant to cyst nematode. Crop Sci. 2002; 42(5):1756. doi: 10.2135/cropsci2002.1756.
Knights EJ, Southwell RJ, Schwinghamer MW, Harden S. Resistance to Phytophthora medi-caginis hansen and maxwell in wild cicer species and its use in breeding root rot resistant chickpea (Cicer arietinum L.). Aust J Agric Res. 2008; 59(4):383-7. doi: 10.1071/AR07175.
Kushwah, A., Bhatia, D., Singh, I., Thudi, M., Singh, G., Bindra, S., et al. (2021). Identification of stable heat tolerance QTLs using inter-specific recombinant inbred line population derived from GPF 2 and ILWC 292. PLOS ONE. 16(8):e0254957 doi: 10.1371/journal.pone.0254957
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular breeding and drought toler-ance in chickpea. Life (Basel).2022; 12 (11):1846. doi: 10.3390/life12111846
Chaturvedi SK, Nadarajan N. Genetic enhancement for grain yield in chickpea: accomplish-ments and resetting research agenda. Electron J Plant Breed. 2010; 1:611-5.
Singh R, Kumar R, Kumari N. Genetic diversity analysis of chickpea using STMS marker. Pro-gAgricInt J. 2012a; 12(1):35-40.
Singh R, Prerna RK, Senger RS, Bhatnagar SK, Kumar R. Molecular diversity analysis of se-lected drought resistant chickpea (Cicer arietinum L.) genotypes. Vegetos. 2012b; 25(1):111-6.
Wani AA. Spectrum and frequency of macromutations induced in chickpea (Cicer arietinum L.). Turk J Biol. 2011; 35:221-31. doi: 10.3906/biy-0902-20.
Dua RP, Chaturvedi SK, Sewak S. Reference varieties of chickpea for IPR regime. Kanpur: In-dian Institute of Pulses Research. 2001.
Haq MA, Sadiq N, Hassan N. Induction of Ascochyta blight resistance in chickpea through in-duced mutations. In: Proceedings of the res. Co-ordination Mtg Faisalabad. Pakistan. 1984.
Kharkwal MC, Jain HK, Sharma B. Induced mutations for improvement of chickpea, lentil, pea and cowpea. In: Proceedings of the FAO/IAEA workshop on improvement of grain legume production using induced mutations, 1e5 July, 1986, Pullman. Washington USA: IAEA. Vi-enna. p. 1988; 89-109.
Kharkwal MC, Nagar JP, Kala YK. BGM 547-A high yielding chickpea (Cicer arietinum L.) mutant variety for late sown conditions of north western plain zone of India. Indian J Genet. 2005; 65:229-230.
Watson A, Ghosh S, Williams MJ, et al. Speed breeding is a powerful tool to accelerate crop re-search and breeding. Nat Plants. 2018; 4:23–29. doi:https://doi.org/10.1038/s41477-017-0083-8.
Chirugwi T, Kemp S, Powell W, Hickey LT. Speed breeding orphan crops. Theor. Appl. Genet. 2019; 132(3):607-16. doi: 10.1007/s00122-018-3202-7
Samineni S, Sen M, Sajj SB, Gaur PM. Rapid generation advance (RGA) in chickpea to pro-duce up to seven generations per year and enable speed breeding. Crop J. 2020; 8(1):164-9. doi: 10.1016/j.cj.2019.08.003.
Chaudhary N, Sandhu R. A comprehensive review on speed breeding methods and applications. Euphytica.2024; 220(42). DOI: 10.1007/s10681-024-03300-x
Mittal N, Bhardwaj J, Verma S, et al. Disentangling potential genotypes for macro and micro nutrients and polymorphic markers in Chickpea. Sci. Rep. 2023; 13:10731. doi:https://doi.org/10.1038/s41598-023-37602-2.
Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, et al. Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLOS ONE. 2011; 6(11): e27275 doi: 10.1371/journal.pone.0027275.
Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, et al. Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol. J. 2012; 10(6):716-32. doi: 10.1111/j.1467-7652.2012. 00710.x.
Tullu A, Muehlbauer FJ, Simon CJ, Mayer MS, Kumar J, Kaiser WJ, Kraft JM. Inheritance and linkage of a gene for resistance to race 4 of fusarium wilt and RAPD markers in chick-pea. Euphytica. 1998; 102(2):227-32. doi: 10.1023/A:1018373412281.
Ganguly AK, Chawla G, Yadav R, Kumar R. STMS profiling of chickpea (Cicer arietinum) with regards to nematode resistance. I JNematol. 2008; 38(2):209-17.
Katoch O, Chauhan US, Yadav R, Yadav SS, Kumar A, Yadav A, et al. Nitrate reductase based phylogenetic analysis in chickpea. RJCE. 2016; 20(7):1-8.
Kumar A, Yadav A, Yadav R, Misra JP, Yadav RS, Upadhyaya HD, Kumar R. Identification of highly polymorphic molecular markers and Potential Genotypes for harnessing chickpea breeding strategies. Legume Res. 2022; 45(7):804-14.
Misra JP, Rao G, Kumar A, Yadav A, Kumar S, Yadav R. et al.Molecular assisted breeding for ascochyta blight resistance in chickpea (Cicer arietinum L.). JPAM. 2016a; 10(2):1469-75.
Soi S, Chauhan US, Yadav R, Kumar J, Yadav SS, Yadav H, et al. STMS based diversity analysis in chickpea (Cicer arietinum L.). New Agric. 2014; 25(2):243-50.
Singh R, Kumari N, Upadhyaya HD, Yadav R, Vaishali, et al. Molecular analysis for genetic structure of biotic and abiotic stress resistant genotypes in chickpea (Cicer arietinum L.). Indian J Biotechnol. 2013; 12(4):537-40.
Stephens A, Lombardi M, Cogan NOI, Forster JW, Hobson K, Materne M, Kaur S. Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of Ascochyta blight resistance in chickpea (Cicer arietinum L.). Mol Breed. 2014; 33(2):297-313. doi: 10.1007/s11032-013-9950-9.
Cobos MJ, Fernandez MJ, Rubio J, Kharrat M, Moreno MT, Gil J, Millan T. A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to fusarium wilt race 0. TheorAppl Genet. 2005; 110(7):1347-53. doi: 10.1007/s00122-005-1980-1
Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S, et al. Marker-assisted backcrossing to introgress resistance to fusarium wilt Race 1 and Ascochyta Blight in C 214, an elite cultivar of chickpea. Plant Genom. 2014a; 7(1):1-11. doi: 10.3835/plantgenome2013.10.0035.
Pratap A, Chaturvedi SK, Tomar R, Rajan N, Malviya N, Thudi M, et al. Marker-assisted intro-gression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea. Mol Genet Genomics. 2017; 292(6):1237-45. doi: 10.1007/s00438-017-1343-z
Fayaz H, Mir AH, Tyagi S, Wani AA, Jan N, Yasin M, Mir RR. Assessment of molecular ge-netic diversity of 384 chickpea genotypes and development of core set of 192 genotypes for chickpea improvement programs. Genet Res Crop Evolu. 2021; 1-13.
Caballo C, Madrid E, Gil J, Chen W, Rubio J, Millan T. Saturation of genomic region implicated in resistance to Fusariumoxysporum f. sp. Ciceris race 5 in chickpea. Mol Breed. 2019b ;39(2):16. doi: 10.1007/s11032-019-0932-4.
Bhardwaj J, Kumari N, Mittal N, Yadav R, Singh RK, Kumar R. Quantitative expression analy-sis through transcript profiling for drought stress in Cicer arietinum L. Res J Biotechnol. 2021; 16(3):26-32.
Roorkiwal M, Bharadwaj C, Barmukh R, Dixit GP, Thudi M, Gaur PM, et al. Integrating ge-nomics for chickpea improvement: achievements and opportunities. TheorAppl Genet. 2020; 133(5):1703-20. doi: 10.1007/s00122-020-03584-2.
Nasim J, Malviya N, Kumar R, Yadav D. Genome-wide bioinformatics analysis of dof tran-scription factor gene family of chickpea and its comparative phylogenetic assessment with Arabidopsis and rice. Plant SystEvol. 2016; 302(8):1009-26. doi: 10.1007/s00606-016-1314-6.
Shimray PW, Bajaj D, Srivastava R, Daware A, Upadhyaya HD, Kumar R, et al. Identifying transcription factor genes associated with yield traits in chickpea. Plant MolBiol Rep. 2017; 35(5):562-74. doi: 10.1007/s11105-017-1044-0.
Yadav D, Malviya N, Nasim J, Kumar R. Bioinformatics intervention in elucidating structural and functional attributes of plant specific transcription factors. Res J Biotechnol. 2016;11(7):83-96.
Coram TE, Pang ECK. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochytarabiei. Plant Biotechnol J. 2006; 4(6):647-66. doi: 10.1111/j.1467-7652.2006. 00208.x.
Mantri NL, Ford R, Coram TE, Pang EC. Transcriptional profiling of chickpea genes differen-tially regulated in response to high-salinity, cold and drought. BMC Genomics. 2007; 8(8):303. doi: 10.1186/1471-2164-8-303.
Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, et al. Large-scale tran-scriptome analysis in chickpea (Cicer arietinum L.) an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol. J. 2011; 9(8):922-31. doi: 10.1111/j.1467-7652.2011. 00625.x.
Kudapa H, Azam S, Sharpe AG, Taran B, Li R, Deonovic B, et al. Comprehensive transcrip-tome assembly of chickpea (Cicer arietinum L.) using Sanger and next generation sequencing platforms: development and applications. PLOS ONE. 2014; 9(1):e86039 doi: 10.1371/journal.pone.0086039.
Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, et al. The salt-responsive transcriptome of chickpea roots and nodules via deep Super SAGE. BMC Plant Biol. 2011; 11:31. doi: 10.1186/1471-2229-11-31.
Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, et al. Gene discovery and tis-sue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol. 2011; 156(4):1661-78. doi: 10.1104/pp.111.178616.
Kumar M, Chauhan AS, Kumar M, Yusuf MA, Sanyal I,Chauhan PS. Transcriptome sequenc-ing of chickpea (Cicer arietinum L.) genotypes for identification of drought-responsive genes under drought stress condition. Plant Mol. Biol. Rep. 2019; 37(3):186-203. doi: 10.1007/s11105-019-01147-4
Gretsova M, Surkova S, Kanapin A, Samsonova A, Logacheva M, Shcherbakov A, et al. Tran-scriptomic Analysis of Flowering Time Genes in Cultivated Chickpea and Wild Cicer. Int J Mol Sci. 2023; 24:2692. doi:https://doi.org/10.3390/ijms24032692.
Channale S, Kalavikatte D, Thompson JP, Kudapa H, Bajaj P, Varshney RK, et al. Transcrip-tome analysis reveals key genes associated with root-lesion nematode Pratylenchusthornei re-sistance in chickpea. Sci Rep. 2021; 11(1):17491.
Kudapa H, Barmukh R, Garg V, Chitikineni A, Samineni S, Agarwal G, Varshney RK. Com-prehensive transcriptome profiling uncovers molecular mechanisms and potential candidate genes associated with heat stress response in chickpea. Int J Mol Sci. 2023a; 24(2):1369. doi: 10.3390/ijms24021369.
Devasirvatham V, Tan DKY. Impact of high temperature and drought stresses on chickpea pro-duction. Agronomy. 2018; 8(8):145. doi: 10.3390/agronomy8080145.
Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. Draft genome sequence of chickpea (Cicer arietinum L.) provides a resource for trait improvement. Nat. Biotechnol. 2013; 31(3):240-6. doi: 10.1038/nbt.2491.
Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, et al, A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J Cell Mol Biol. 2013; 74:715–729.
Verma M, Kumar V, Patel RK, Garg R, Jain M. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics. PLoS ONE. 2015; 10: e0136880.
Varshney RK, Thudi M, Pandey MK, Tardieu F, Ojiewo C, Vadez V, et al. Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. J Exp Bot. 2018; 69(13):3293-3312. doi: 10.1093/jxb/ery088.
Thudi M, Chitikineni A, Liu X, He W, Roorkiwal M, Yang W, et al. Recent breeding programs enhanced genetic diversity in both desi and Kabuli varieties of chickpea (Cicer arietinum L.). Sci Rep. 2016; 6:38636. doi: 10.1038/srep38636.
Golicz AA, Bayer PE, Bhalla PL, Batley J, Edwards D. Pangenomics Comes of Age: from bac-teria to plant and animal applications. Trends Genet. 2020; 36(2):132-45. doi: 10.1016/j.tig.2019.11.006.
Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D. Plant pan-genomes are the new refer-ence. Nat Plants. 2020; 6(8):914-20. doi: 10.1038/s41477-020-0733-0
Tao Y, Zhao X, Mace E, Henry R, Jordan D. Exploring and exploiting pan-genomics for crop improvement. Mol. Plant. 2019; 12(2):156-69. doi: 10.1016/j.molp.2018.12.016.
Torkamaneh D, Lemay MA, Belzile F. The pan-genome of the cultivated soybean (PanSoy) re-veals an extraordinarily conserved gene content. Plant Biotechnol J. 2021; 19(9):1852-62. doi: 10.1111/pbi.13600.
Varshney RK, Roorkiwal M, Sun S, Bajaj P, Chitikineni A, Thudi M, et al. A chickpea genetic variation map based on the sequencing of 3366 genomes. Nature. 2021b; 599(7886):622-7. doi: 10.1038/s41586-021-04066-1.
Liu C, Wang Y, Peng J, Fan B, Xu D, Wu J, et al. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. Plant Commun. 2022; 3(6):100352. doi: 10.1016/j.xplc.2022.100352.
Liang Q, Munoz-Amatriaín M, Shu S, Lo S, Wu X, Carlson JW, et al. A view of the pan-genome of domesticated cowpea (VignaunguiculataL.Walp.). Plant Genom. 2023; e20319 doi: 10.1002/tpg2.20319.
Zhao J, Bayer PE, Ruperao P, Saxena RK, Khan AW, Golicz AA, et al. Trait associations in the pangenome of pigeon pea (Cajanuscajan). Plant Biotechnol J. 2020; 18(9):1946-54. doi: 10.1111/pbi.13354.
Hufnagel B, Soriano A, Taylor J, Divol F, Kroc M, Sanders H, et al. Pangenome of white lupin provides insights into the diversity of the species. Plant Biotechnol. J. 2021; 19(12):2532-43. doi: 10.1111/pbi.13678.
Gutierrez-Gonzalez JJ, Garcia P, Polanco C, Gonzalez AI, Vaquero F, Vences FJ, et al. multi-species transcriptome assemblies of cultivated and wild lentils (Lens sp.) provide a first glimpse at the lentil pangenome. Agronomy. 2022; 12(7):1619. doi: 10.3390/agronomy12071619.
Yang T, Liu R, Luo Y, Hu S, Wang D. Improved 202 pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet. 2022; 54(10): 1553-1563.doi: 10.1038/s41588-022-01172-2.
Khan AW, Garg V, Roorkiwal M, Golicz AA, Edwards D, Varshney RK. Super-pangenome by integrating the wild-side of a species for accelerated crop improvement. Trends Plant Sci. 2020. doi:https://doi. org/10.1016/j.tplants.2019.10.012
Robert P, Brault C, Rincent R, Segura V. Phenomic selection: A new and efficient alternative to genomic selection genomic selection (GS). In: Genomic prediction of complex traits: methods and protocols. New York, NY: Springer US. 2022; 397-420.
Chawade A, van Ham J, Blomquist H, Bagge O, Alexandersson E, Ortiz R. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy 2019; 9(5):258. doi: 10.3390/agronomy9050258.
Nguyen GN, Norton SL, Rosewarne GM, James LE, Slater AT. Automated phenotyping for early vigour of field pea seedlings in controlled environment by colour imaging technology. PLoS One. 2018; 13(11):e0207788.
Tracy SR, Nagel KA, Postma JA, Fassbender H, Wasson A, Watt M. Crop improvement from phenotyping roots: highlights reveal expanding opportunities. Trends Plant Sci. 2020; 25(1): 105–118.
Zhang L, Niu Y, Zhang H, Han W, Li G, Tang J, et al. Maize canopy temperature extracted from UAV thermal and RGB imagery and its application in water stress monitoring. Front Plant Sci. 2019; 10:1270.
Tello J, Montemayor MI, Forneck A, Ibanez J. A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine. Plant Methods. 2018; 14(1):3.
Zarco-Tejada PJ, Berni JA, Suarez L, Sepulcre-Canto G, Morales F, Miller JR. Imaging chloro-phyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress de-tection. Remote Sens Environ. 2009; 113(6):1262–1275.
Quiros JJ, McGee RJ, Vandemark GJ, Romanelli T, Sankaran S. Field phenotyping using mul-tispectral imaging in pea (Pisumsativum L.) and chickpea (Cicer arietinum L.). EngAgric Envi-ron Food. 2019; 12(4):404–413
Jannink JL, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics.2010; 9(2):166-77. doi: 10.1093/bfgp/elq001.
Crossa J, Perez-Rodriguez P, Cuevas J, Montesinos-Lopez O, Jarquin D, De Los Campos G, Varshney RK. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 2017; 22(11):961-75.
Roorkiwal M, Jarquin D, Singh MK, Gaur PM, Bharadwaj C, Rathore A, et al. Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype× environment interaction on prediction accuracy in chickpea. Sci Rep. 2018; 8(1):11701. doi: 10.1038/s41598-018-30027-2.
Asoro FG, Newell MA, Beavis WD, Scott MP, Tinker NA,Jannink JL. Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Sci. 2013; 53(5):1894-906. doi: 10.2135/cropsci2012.09.0526.
Rutkoski J, Singh RP, Huerta‐Espino J, Bhavani S, Poland J, Jannink JL, Sorrell ME. Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genom. 2015; 8(2):e10.0074 doi: 10.3835/plantgenome2014.10.0074.
Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, et al. Advancing crop transformation in the era of genome editing. Plant Cell. 2016; 28(7):1510-20. doi: 10.1105/tpc.16.00196
Fiaz S, Khan SA, Anis GB, Gaballah MM, Riaz A. CRISPR/Cas techniques: aA new method for RNA interference in cereals. In: CRISPR and RNAi systems: nanobiotechnology ap-proaches to plant breeding and protection Cockle C, editor. 1st ed. Amsterdam: Elsevier pub-lisher. 2021; 233-52. doi: 10.1016/b978-0-12-821910-2.00032-1.
Mahto RK, Ambika, Singh C, Chandana BS, Singh RK, Verma S, et al. Chickpea biofortifica-tion for cytokinin dehydrogenase via genome editing to enhance abiotic-biotic stress tolerance and food security. Front Genet. 2022; 13:900324, doi: 10.3389/fgene.2022.900324.
Yadav, R.K., Tripathi, M.K., Tiwari, S., Tripathi, N., Asati, R., Patel, V., et al. (2023a). Breed-ing and genomic approaches towards development of fusarium wilt resistance in chickpea. Life (Basel). 13(4):988. doi: 10.3390/life13040988.
Singh, C, Kumar R, Sehgal H, Bhati S, Singhal T, Gayacharan et al. Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Front Genet. 2023; 14:1085024. doi: 10.3389/fgene.2023.1085024.
Gupta SK, Vishwakarma NK, Malakar P, Vanspati P, Sharma NK, Chattopadhyay D. Devel-opment of an agrobacterium-delivered codon-optimized CRISPR/Cas9 system for chickpea ge-nome editing. Protoplasma. 2023; 1-15.
Rani A, Devi P, Jha UC, Sharma KD, Siddique KHM., Nayyar H. Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front Plant Sci. 2019; 10:1759. doi: 10.3389/fpls.2019.01759
Das Bhowmik SS, Cheng AY, Long H, Tan GZH, Hoang TML, Karbaschi MR, et al. Robust genetic transformation system to obtain non-chimeric transgenic chick-pea. Front Plant Sci. 2019; 10:524. doi: 10.3389/fpls.2019.00524.
Malik MAM, Haider MS, Zhai Y, Khan MAU, Pappu HR. Towards developing resistance to chickpea chlorotic dwarf virus through CRISPR/Cas9-mediated gene editing using multiplexed gRNAs. J Plant Dis Protection. 2023; 130(1):23-33.
McMurray LS, Preston C, Vandenberg A, Mao D, Bett KE, Paull JG. Induced novel psbA mu-tation (Ala251 to Thr) in higher plants confers resistance to PSII inhibitor metribuzin in Lens culinaris. Pest Mgt Sci. 2019; 75:1564–1570.
Rezaei MK, Deokar A, Taran, B. Identification and expression analysis of candidate genes in-volved in carotenoid biosynthesis in chickpea seeds. Front Plant Sci. 2016; 7:1867–1867.
Khandal H, Gupta SK, Dwivedi V, Mandal D, Sharma NK, Vishwakarma NK, et al. Rootspeci-fic expression of chickpea cytokinin oxidase/dehydrogenase 6 leads to enhanced root growth, drought tolerance and yield without compromising nodulation. Plant Biotechnol J. 2020; 18(11):2225–2240. doi:10.1111/pbi.13378.
Hegde, V.S. (2011). Morphology and genetics of a new found determinate genotype in chick-pea. Euphytica, 182: 35-42.
Ambika, Hegde VS, Nimmy MS, Bharadwaj C, Tripathi S, et al.Unraveling genetics of semi-determinacy and identification of markers for indeterminate stem growth habit in chickpea (Ci-cer arietinum L.). Sci. Rep. 2021; 11(21837):1-8. doi: 10.1038/s41598-021-01464-3
Khan A, Akhtar A. The inheritance of petal colour in gram. Agric. Livestock India. 1934; 4:127–155.
Ali H, Shah TM, Iqbal N, Atta BM,Haq MA. Mutagenic induction of double-podding trait in diferent genotypes of chickpea and their characterization by STMS marker. Plant Breed. 2010; 129:116–119. https://doi.org/10.1111/j.1439-0523.2009. 01659.x
Narayanan A, Saxena NP, Sheldrake AK. Varietal differences in seed size and seedling growth of pigeonpea and chickpea. Ind J Agric Sci. 1981; 51:389–393.
Dahiya B, Solanki I, Kumar R. Germination rate and its genetics in chickpea. Int. Chickpea Newslett. 1985; 13:6–8.
Eker T, Sari D, Sari H, Tosun HS, Toker C. A kabuli chickpea ideotype. Sci Rep. 2022; 12(1):1611.
McPhee KE, Muehlbauer FJ. Evaluation of stem strength in the core collection of Pisum germ-plasm. Pisum Genet. 1999; 31:21- 24.
Khush GS. Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed. 2013; 132:433- 436.
Omar M, Singh KB. Increasing seed yield in chickpea by increased biomass yield. Int Chickpea PigeonpeaNewslett. 1997; 4:14-15.
Hegde VS, Kumar J. Identification of agronomic traits to enhance biomass and grain yield of chickpea under a rainfed short-duration environment. Legume Res. 2015; 38:621-625.
Ball RA, HanlanTG,Vandenberg A. Stem and canopy attributes that affect lodging resistance in lentil. Canadian J Plant Sci. 2006; 86:71-81.
Hegde VS, TripathiS,Bharadwaj C, Agrawal PK, Choudhary AK. Genetics and genomics ap-proaches to enhance adaptation and yield of chickpea (Cicer arietinum L.) in semi-arid envi-ronments. SABRAO J Breed Genet. 2018; 50:2.
Vishnu B, Jayalakshmi V, Rani MS. Genetic diversity studies among chickpea (Cicer arietinum L.) genotypes under rainfed and irrigated conditions for yield attributing and traits related to mechanical harvesting. Legume Res.: Int J. 2020; 43(2).
Arriagada O, Cacciuttolo F, Cabeza RA, Carrasco B, Schwember AR. A comprehensive review on chickpea (Cicer arietinum L.) breeding for abiotic stress tolerance and climatechange resil-ience. Int J Mol Sci. 2022; 23(12):6794. doi: 10.3390/ijms23126794
Borges da Silva É D, Xavier A, Faria MV, Schwember A.R. Impact of genomic prediction model, selection intensity, and breeding strategy on the long-term genetic gain and genetic ero-sion in soybean breeding. Frontiers in Genetics. 2021; 12, 637133. Doi: https://doi.org/10.3389/fgene.2021.637133
Mohanty JK, Jha UC, Dixit GP, Parida SK. Harnessing the hidden allelic diversity of wild Cicer to accelerate genomics-assisted chickpea crop improvement. Molecular Biology Reports, 2022; 49:5697–5715. doi:10.1007/s11033-022-07613-9.
Kumar, M., Rani, K., & Penna, S. (2023). Induced Mutagenesis for Developing Climate Resil-ience in Plants. In S. Penna & S. M. Jain (Eds.), Mutation Breeding for Sustainable Food Pro-duction and Climate Resilience. p.177–203. Springer Nature. DOI: 10.1007/978-981-16-9720-3_7
Chaudhary N, Sandhu R. A comprehensive review on speed breeding methods and applications. Euphytica.2024; 220(42)1-12. DOI: 10.1007/s10681-024-03300-x